
The Excedance Set of a PermutationRichard EHRENBORG and Einar STEINGR�IMSSONAbstractThe excedance set of a permutation � = �1�2 � � ��n is the set of indices ifor which �i > i. We give a formula for the number of permutations with agiven excedance set, and recursive formulas satis�ed by these numbers. Weprove log-concavity of certain sequences of these numbers and we show that themost common excedance set among permutations in the symmetric group Snis f1; 2; : : : ; bn=2cg. We also relate certain excedance set numbers to Stirlingnumbers of the second kind, and others to the Genocchi numbers.1 IntroductionThe theory of permutation statistics has a long history and has grown at a rapidpace in the last few decades. Two among the classical statistics are the number ofdescents and the number of excedances in a permutation. They were �rst studied byMacMahon [17] a hundred years ago, and they still play an important role in the �eld.Of these, the number of descents has received the most attention, perhaps becausethe de�nition of descent generalizes to an arbitrary Coxeter group. Moreover, thedescent set of a permutation has intriguing algebraic properties [1, 12, 22], as wellas being a beautiful example of the theory of lattice path enumeration; see the workof Gessel and Viennot [13].Although the concepts of excedance and descent are closely related and can beconsidered as mirror images of each other, the story is quite di�erent when it comes todescent sets versus excedance sets. The descent set of a permutation � = �1�2 � � � �nis the set of indices i for which �i > �i+1, whereas the excedance set is the set ofindices i for which �i > i.In this paper we study enumerative properties of the excedance set. Followingthe technique used in [8], we encode subsets of the set f1; : : : ; n � 1g as words inthe letters a and b. This provides an e�ective notation to study the cardinalities ofexcedance sets. Thus, for example, the word baaba corresponds to the set f1; 4g,regarded as a subset of f1; 2; 3; 4; 5g. To denote the number of permutations in S6with this excedance set we write [baaba] or [ba2ba] for short. Using this notation wegive recursive formulas for the number of permutations with a given excedance setand we also obtain an explicit inclusion-exclusion formula.We also determine the most frequent excedance set among permutations in Sn,that is, for which word w the bracket [w] is maximized. The analogous problem fordescent sets has raised a lot of interest [4, 18, 21]. The most recent method comes1



from relating the problem to the cd-index of the Boolean algebra, see [8, 20]. Forrecent developments of the cd-index of the Boolean algebra, see [2, 9, 19].Furthermore, we determine the maximum for [w] among all words w with a �xednumber of runs, that is, a �xed number of maximal contiguous sequences of b's. Thesolution to the corresponding problem for descent sets was conjectured by Gesseland recently proved by Ehrenborg and Mahajan [7].We hope that this paper will stimulate interest in the excedance set and that fur-ther research will be done in exploring the properties of this set-statistic. Especially,we would like to see an a�rmative answer to the four inequalities in Conjecture 5.3.The paper is organized as follows. In Section 2 we obtain the basic propertiesof the excedance statistic. In Sections 3 and 4 we discuss maximizing problemsof the statistic over di�erent sets. In Section 5 we prove that the sequence [wak]is log-concave. We also state Conjecture 5.3, which can be viewed as a generallog-concavity property. In Section 6 we prove the inclusion-exclusion formula. Weuse the fact that the bracket [�] can be viewed as a linear functional from the ringZha; bi to the integers. In the last section we discuss some further research relatedto Genocchi numbers.2 PreliminariesLet Sn denote the symmetric group on n elements, that is, all permutations of theelements 1; : : : ; n. Let � = �1 � � � �n be a permutation in Sn. An excedance in �is an index i such that �i > i. The excedance set of � is the set E(�) = fi :i is an excedance in �g. Observe that E(�) is a subset of f1; : : : ; n � 1g since theindex n is never an excedance.A convenient way to encode the subsets of a set is by words. Let a and b benon-commuting variables. For S a subset of f1; : : : ; n� 1g de�ne uS to be the wordu = u1 � � � un�1 where ui = a if i does not belong to S and ui = b if i belongs toS. For the empty set we set u; = 1. For � a permutation in Sn let the excedanceword w(�) be the word uE(�) = u1 � � � un�1. Observe that ui = b if and only if i isan excedance in �. Denote the number of permutations in Sn with excedance wordw by the bracket [w].As an example, w(3241) = bab and [bab] = 3 because there are exactly threepermutations in S4 with excedance set f1; 3g, namely 3241, 2143, and 3142. Alsoobserve that [1] = 1 since there is exactly one permutation in S1 with excedance set;.Proposition 2.1 Let v and w be ab-words. Then[vbaw] = [vabw] + [vbw] + [vaw]:Proof: Let S be the set f� 2 Sn : w(�) = vbawg. We partition S into three setsand show that those sets are in a one-to-one correspondence with sets of cardinality[vabw], [vbw] and [vaw], respectively. 2



Suppose the length of v is k � 2. Let � = �1 � � � �k�2 x y �k+1 � � � �n be apermutation in S with w(�) = vbaw and thus y � k � x. Then � must satisfyexactly one of the following conditions:(i) x > k and y = k,(ii) x = k and y < k,(iii) x > k and y < k.The permutations in S satisfying (i) are in a one-to-one correspondence with thepermutations in Sn�1 with excedance word vbw. Namely, removing the letter yfrom � and reducing by 1 each remaining letter in � that is larger than k givesa permutation in Sn�1. It is straightforward to check that the excedances in theresulting permutation are the same as those in �. The permutations so obtained arethus counted by [vbw].By a similar argument, now removing x instead of y, the permutations in Ssatisfying (ii) are in one-to-one correspondence with the permutations in Sn�1 withexcedance word vaw.Finally, suppose � satis�es (iii). Transposing x and y to get the permutation� = �1 � � � �k�2 y x �k+1 � � � �n;de�nes a bijection to the set of permutations in Sn whose excedance word is vabw.2 For an ab-word u = u1u2 � � � un, de�ne the dual word u0 by u0 = u0n � � � u02u01,where u0i = b if ui = a and u0i = a if ui = b.Lemma 2.2 For any ab-word w we have that [w0] = [w].Proof: Given a permutation � = �1�2 � � � �n, de�ne a permutation � = �1�2 � � � �nby setting �i = n + 1 � �n�i for i < n and �n = n + 1 � �n. This amounts toa bijective correspondence of Sn with itself. Then we have �i > i if and only if�n�i < (n� i+1), which is equivalent to �n�i � (n� i). Thus, i is an excedance in� if and only if n� i is a non-excedance in �. 2In what follows we will refer to the identity in Lemma 2.2 as duality.Lemma 2.3 For all words w, we have [aw] = [wb] = [w].Proof: A permutation � 2 Sn+1 with w(�) = wb must have �n = (n + 1). Suchpermutations are in one-to-one correspondence with the permutations in Sn withexcedance word [w]; simply remove the letter (n + 1) from position n in �. Byduality, [aw] = [w0b] = [w0] = [w], which completes the proof. 2The following curious fact now follows from Proposition 2.1.Corollary 2.4 For any word w, [w] is odd.3



Proof: By Proposition 2.1, [w] can be written in terms of three words, two of whichare shorter than w and one of which has the same letters as w but where one of thea's has been moved closer to the beginning of the word. Since [akbm] = [1] = 1, thisimplies by induction that for any word w the quantity [w] can be written as the sumof an odd number of ones. 2Proposition 2.5 We have[bnaw] = nXi=0 n+ 1i ![biw] and [wban] = nXi=0 n+ 1i ![wai]:Proof: The proof of the �rst identity is by induction on n. By Lemma 2.3 we have[aw] = [w]. This proves the induction case n = 0. Assume now that the statement istrue for n. Using Proposition 2.1 and applying the inductive hypothesis to [bnabw]and to [bnaw] we have[bn+1aw] = [bnbaw] = [bnabw] + [bnbw] + [bnaw]= nXi=0 n+ 1i ![bibw] + [bn+1w] + nXi=0 n+ 1i ![biw]= n+1Xi=1  n+ 1i� 1![biw] + n+1Xi=0  n+ 1i ![biw]= n+1Xi=0 " n+ 1i� 1!+  n+ 1i !# [biw]= n+1Xi=0  n+ 2i ![biw];as desired. The second identity follows by duality. 23 Unimodality of [bkan�k]A sequence of positive real numbers a0; a1; a2; : : : is said to be unimodal if, for someinteger k with 0 � k � n, we have a0 � a1 � � � � � ak � ak+1 � � � � � an. We saythat the sequence has a peak at the integer k. Observe that a unimodal sequencecan have several peaks. In this section we are interested in the unimodality of thesequence [bkan�k], k = 0; : : : ; n. This sequence is symmetric, that is, by duality wehave [bkan�k] = [bn�kak].Theorem 3.1 The sequence [bkan�k], k = 0; : : : ; n, is unimodal with peak(s) atk = bn=2c and k = dn=2e. 4



Proof: Letm = n�k. By symmetry it is enough to prove that if 1 � k � m � bn=2cthen [bk�1am+1] < [bkam]. We prove this by induction on n. The base case isstraightforward.The induction step is as follows. We wish to show that [bkam] > [bk�1am+1] or,equivalently, that [bkam]� [bk�1am+1] > 0. By Proposition 2.5 we havehbkami = 1 + kXi=1 k + 1i !hbiam�1i= 1 + k�1Xi=0  k + 1i+ 1!hbi+1am�1i ;hbk�1am+1i = k�1Xi=0  ki!hbiami :The di�erence is given byhbkami� hbk�1am+1i = 1 + k�1Xi=0   k + 1i+ 1!hbi+1am�1i�  ki!hbiami!� 1 + k�1Xi=0   ki!hbi+1am�1i�  ki!hbiami!= 1 + k�1Xi=0  ki! � �hbi+1am�1i� hbiami� :By the induction hypothesis we know that [bi+1am�1] � [biam] � 0, except for thecase when k = m and i = k � 1. But in this case we have that [bi+1am�1] =[bkak�1] = [bk�1ak] = [biam]. Hence we conclude that [bkam] � [bk�1am+1] � 1 andthe induction step is proved. 2Corollary 3.2 Among all words w of length n, the maximum of [w] is attained forw = bkan�k, where k = bn=2c.Proof: By Proposition 2.1 we have that [ubav] > [uabv]. That is, transposing ab inuabv to get ubav increases the bracket. Thus, among all words of length n and withexactly k b's, the maximum for the bracket is reached by bkan�k. By Theorem 3.1,[bkan�k] is maximized when k = bn=2c. 24 Words with exactly k runsA descent-run in a permutation � = �1�2 � � � �n is a maximal set fk; k+1; : : : ; k+mg,where m > 0, such that �k > �k+1 > � � � > �k+m. An ascent-run in � is de�nedsimilarly, with > replaced by <. Gessel conjectured that the most common descentset among permutations in Sn with exactly r descent-runs and r ascent-runs is,5



roughly speaking, the set corresponding to the word an=kbn=kan=kbn=k : : :, wherek = 2r. The exact rounding the exponents is formulated in the conjecture. Thisconjecture was recently proved by Ehrenborg and Mahajan [7].We will in this section consider the analogous question for the excedance set.De�nition 4.1 A run in an ab-word is a maximal contiguous subword consistingsolely of b's.As an example, the word bbabaabbba has three runs, of lengths 2, 1 and 3, respec-tively.Proposition 4.2 Among the ab-words of length n with exactly r+1 runs, the bracket[�] is maximized by bm(ab)rap, where bp=2c = bm=2c and m + p = n � 2r. Inparticular, if n is even then m = p.Proof: By duality, we may restrict our attention to words with at least as many b'sas a's. Moreover, by Lemma 2.3 it su�ces to consider words that begin with b andend with a. We �rst show that among the words of length n with exactly r+1 runsand exactly s b's, the bracket is maximized by bs�r(ab)rap (where p = n� s� r).Let w = vabtuas, where we assume t > 1. Then [w] < [vbabt�1uas], by Propo-sition 2.1 and thus we can \move" the �rst b in a run of length t > 1 successivelyleftwards until it is \absorbed" by the preceding run, always increasing the bracket.As an example, [babbaabbbaa] < [babbababbaa] < [babbbaabbaa]:Repeating this process will move all b's but one from each run all the way left tothe �rst run of the word, increasing the bracket and preserving the number of runs.Similarly, moving all a's but one from each contiguous string of a's to the end ofthe word will increase the bracket and preserve the number of runs. This proves theclaim.It remains to be shown that among all words of the form bm(ab)rap, wherem+ p = n� 2r, the bracket reaches its maximum when bp=2c = bm=2c. By duality,[bm(ab)rap] = [bp(ab)ram], so we may take m � p and then it su�ces to show that[bm(ab)rap] � [bm�1(ab)rap+1] � 0:Note that this will prove that the sequence [bm(ab)rak�m], indexed bym, is unimodalwith peak \in the middle." We now proceed by induction on r, assuming this to betrue for all r � k. The basis step is r = 0, which follows from Theorem 3.1. Now,by Proposition 2.5, we havehbm(ab)k+1api� hbm�1(ab)k+1ap+1i= hbmab(ab)kapi� hbm�1ab(ab)kap+1i= hb(ab)kapi+ mXi=1 m+ 1i !hbi+1(ab)kapi� m�1Xi=0  mi !hbi+1(ab)kap+1i:6



Since �m+1i � � � mi�1� we need only show thathbi+1(ab)kapi � hbi(ab)kap+1i :But this is covered by the inductive hypothesis, except in the case when i = m = p.In that case we have, by duality,hbi+1(ab)kapi = hbp(ab)kai+1i = hbi(ab)kap+1i ;as desired. 25 Log-concavity resultsA sequence of (real) numbers a0; a1; a2; : : : is said to be log-concave if, for any k > 0,we have ak�1 � ak+1 � a2k. It is straightforward to verify that this is equivalent toak � am � ak+i � am�i, for 0 � i � m � k. Moreover, for �nite positive sequenceslog-concavity implies unimodality.In this section we prove the following result.Proposition 5.1 For any word w, the sequence f[wak]gk�0 is log-concave.In order to prove this proposition we need a following lemma.Lemma 5.2 Let a0; a1; a2; : : : be a log-concave sequence of non-negative real num-bers. Then the sequence An = n�1Xi=0  ni!aifor n = 1; 2; : : : is log-concave.Proof: We need to show that Dn = A2n � An�1An+1 � 0. For i � j, let Ci;j bethe coe�cient of aiaj in Dn. For convenience of notation, set Ci;j = 0 if i > j. LetSk =Xi Ci;k�i � aiak�i. Then we haveDn =Xi;j Ci;j � aiaj = Xk Sk;so it su�ces to show that Sk � 0 for all k.We prove this in two steps. First, we show that Pi Ci;k�i = � n�1k�n+1�: We thendemonstrate that for each k and form � k=2, the sequence C0;k; C1;k�1; : : : ; Cm;k�m,has the property that all of its terms are non-negative after a certain point, sayCj;k�j, and non-positive before that. But, by log-concavity of the sequence a0; a1; a2; : : :,we have that a0ak � a1ak�1 � a2ak�2 � � � �, soSk =Xi Ci;k�i � aiak�i � ajak�jXi Ci;k�i:7



Since ajak�j � 0, it su�ces to know that Pi Ci;k�i is non-negative.Observe that An = �an +Pni=0 �ni�ai. Now, Ci;k�i is the coe�cient to aiak�i inDn = A2n �An�1An+1= "�an + nXi=0 ni!ai#2� "�an�1 + n�1Xi=0  n� 1i !ai# � "�an+1 + n+1Xi=0  n+ 1i !ai# ;so we haveXi Ci;k�i = Xi " ni! nk � i!�  n+ 1i ! n� 1k � i!#� nn! nk � n!�  nk � n! nn! n+ 1n+ 1! n� 1k � n� 1!+ n+ 1k � n+ 1! n� 1n� 1!= Xi " ni! nk � i!�  n+ 1i ! n� 1k � i!#� 2 nk � n!+  n� 1k � n� 1!+  n+ 1k � n+ 1!:The following identity is a special case of the Vandermonde Convolution; see forinstance [15, p. 174].Xi  n+ 1i ! n� 1k � i! =Xi  ni! nk � i! =  2nk !:Thus we haveXi Ci;k�i = � 2 nk � n!+  n� 1k � n� 1!+  n+ 1k � n+ 1!;which, by a straightforward manipulation, equals � n�1k�n+1� as claimed.It remains to be shown that for some m the sequence Ci;k�i is non-positive fori � m and non-negative for i > m.We haveC(i; k � i) = 2 ni! nk � i!�  n+ 1i ! n� 1k � i!�  n+ 1k � i! n� 1i !;8



except when i � n� 1 or k � i � n� 1. These two latter cases are easily treated.When k � n, we haveC(0; k) = " nk!�  n� 1k !#� " n+ 1k !�  nk!#=  n� 1k � 1!�  nk � 1! = � n� 1k � 2! < 0:When k > n we have, for i = k � n, thatC(i; k � i) = C(k � n; n) = � n+ 1k � i! n� 1i ! < 0:Now, apart from the above mentioned exceptions, we haveC(i; k � i) = (n� 1)!2i! � (k � 1)! � (n� i+ 1)! � (n� k + i+ 1)!A(i; k);whereA(i; k) = 2n2(n� i+ 1)(n� k + i+ 1)�(n+ 1)(n� k + i)(n� k + i+ 1)� (n+ 1)(n� i+ 1)(n� i):Clearly the sign of C(i; k � i) is the same as that of A(i; k). The derivative ofA(i; k) with respect to i is 2(k � 2i)(1 + n + n2) so, as a function of i, A(i; k) hasits only critical point at i = 2=k. The cases where k � 2 are easily checked. Whenk > 2, this means that the only critical point of A(i; k) lies in the interval (0; 1),so A(i; k) changes sign at most once in the interval of interest to us. As it must bepositive somewhere, and it is negative for the smallest relevant value of i, A(i; k)must eventually be positive. 2Proof of Proposition 5.1: The proof is by induction on the length of w. The basecase is w = 1 (the empty word), which is trivial, since [ak] = 1 for all k � 0. Forthe induction step, assume the statement to hold for the word v and we show thatit then also holds for w = va and w = vb, which covers all possibilities. In the casew = va, the sequence f[wak]gk�0 coincides with f[vak]gk�1, and so is log-concave.If w = vb we have, by Proposition 2.5,[wak] = [vbak] = nXi=0 n+ 1i ![vai]:But by Lemma 5.2 this implies that the sequence f[wak]gk�0 is log-concave. 2As a generalization of Proposition 5.1 we conjecture the following.9



Conjecture 5.3 For any three words u, v and w the following four inequalitieshold: [uvw] � [uavaw] � [uavw] � [uvaw];[uvw] � [uavbw] � [uavw] � [uvbw];[uvw] � [ubvaw] � [ubvw] � [uvaw];[uvw] � [ubvbw] � [ubvw] � [uvbw]:Observe that the �rst and fourth inequalities are equivalent by duality. Moreover,the �rst inequality implies Proposition 5.1.One consequence of this conjecture is that the sequence [ubkvan�kw], for k =0; 1; : : : ; n, is unimodal. The argument is as follows. Let �i;j = [ubk+ivan�k+jw] fori+ j � 2. Conjecture 5.3 implies that�0;0 � �0;2 � �20;1; �0;0 � �2;0 � �21;0; and (�0;1 � �1;0)2 � (�0;0 � �1;1)2:Multiplying these three inequalities together, and canceling terms, we obtain �0;2 ��2;0 � �21;1. This inequality implies that the sequence [ubkvan�kw], for k = 0; 1; : : : ; n,is log-concave, and hence unimodal.6 An inclusion-exclusion formula for [w]Recall that the excedance set of a permutation � is E(�) = fi : �(i) > ig: Abusingnotation, de�ne the excedance set of a word u = u1u2 � � � un�1 to be E(u) = fi :ui = bg. Thus, if � is a permutation with w(�) = w, then E(w) = E(�).Let w = an1ban2ban3b � � � ankbank+1and set n(w) = (n1; n2; : : : ; nk+1). Note that a pair of consecutive b's in w willcorrespond to a zero coordinate in the vector n(w). As an example, n(babbaaba) =(0; 1; 0; 2; 1).We wish to compute [w], but �rst we determine the number of permutationswhose excedance set is contained in the excedance set of w.Lemma 6.1 Let w be a word and suppose n(w) = (n1; : : : ; nk+1). Then we havejf� 2 Sn : E(�) � E(w)gj = 1n1+1 � 2n2+1 � 3n3+1 � � � (k + 1)nk+1+1:Proof: We wish to count the number of permutations in Sn whose excedance setis contained in E(w). We do this in two steps. First we choose the entries �(i) ofthe permutation � for i not in E(w). That is, these entries are non-excedances ofthe permutation �, so we need �(i) � i. Then we choose the remaining entries of10



�. Since they may or may not be excedances, there are no restrictions on them andthey can thus be chosen freely.To choose �(i) such that �(i) � i for all i 62 E(w), and such that all entriesare distinct, is equivalent to choosing a rook placement on a Ferrers board of widthn�k� 1 = n1+ � � �+nk+1 where the set of heights is E(w) = f�1 < � � � < �n�k�1g.By the same counting technique as in [14] (see also [23, Theorem 2.4.1]) this can bedone in n�k�1Yj=1 (�j � j) = 1n1 � 2n2 � � � (k + 1)nk+1di�erent ways.As for the places in � corresponding to b's in w, these are allowed to be eitherexcedances or non-excedances. Hence, the remaining letters in � can be placed inany order. There are k such places, corresponding to the k b's, and there is also thelast hidden position of � which does not correspond to a letter in the word w. Theletters in these remaining k + 1 positions can be ordered in (k + 1)! di�erent ways.All in all, then, the permutation � can be constructed in 1n1+1 � 2n2+1 � � � (k+1)nk+1ways. 2The bracket [w] is de�ned on ab-monomials. By linearity we can extend thebracket to the ring Zha; bi of polynomials in the non-commuting variables a; b overZ. We now reformulate Lemma 6.1 in this setting.Lemma 6.2 For any vector (n1; : : : ; nk+1) we have[an1 � (a+ b) � an2 � (a+ b) � � � (a+ b) � ank+1 ] = 1n1+1 � 2n2+1 � � � (k + 1)nk+1+1:Observe that having an (a + b) in position i means that we can either have anexcedance or a non-excedance at position i. Hence Lemma 6.2 follows directly fromLemma 6.1.We now give an explicit formula for [w], where w is an ab-word. This can bedone either by Lemma 6.1, together with the principle of inclusion and exclusion, orwe can use Lemma 6.2 and a change of basis. We do the latter here.Consider the ab-word w = an1 � b � an2 � b � an3 . By writing b = (a + b) � a andexpanding, we can write w as a linear combination of monomials in the letters a and(a+ b). In our example,an1 � b � an2 � b � an3 = an1 � (a+ b) � an2 � (a+ b) � an3 � an1 � (a+ b) � an2 � a � an3�an1 � a � an2 � (a+ b) � an3 + an1 � a � an2 � a � an3= an1 � (a+ b) � an2 � (a+ b) � an3 � an1 � (a+ b) � an2+1+n3�an1+1+n2 � (a+ b) � an3 + an1+1+n2+1+n3 :11



Applying the bracket, which is a linear map, to the above equation we obtain[an1 � b � an2 � b � an3 ] = 1n1+1 � 2n2+1 � 3n3+1 � 1n1+1 � 2n2+1+n3+1�1n1+1+n2+1 � 2n3+1 + 1n1+1+n2+1+n3+1= 1n1+1 � 2n2+1 � 3n3+1 � 1n1+1 � 2n2+1 � 2n3+1�1n1+1 � 1n2+1 � 2n3+1 + 1n1+1 � 1n2+1 � 1n3+1:Let Rk = fr = (r1; : : : ; rk+1) : r1 = 1; ri+1 � ri 2 f0; 1gg. Thus, each r-vectorr = (r1; : : : ; rk+1) in Rk has r1 = 1 and increases by at most one at each coordinate.We say that i is a horizontal step in r = (r1; : : : ; rk+1) if ri = ri+1. Let h(r) be thenumber of horizontal steps in r. We have that h(r) = k+ 1� rk+1. In particular, ifh(r) = 0, then r = (1; 2; : : : ; k + 1).Let now 1 = (1; 1; : : : ; 1), and setrn(w)+1 = rn1+11 � rn2+12 � � � rnk+1k :A straightforward argument, following the example after Lemma 6.2, proves thefollowing theorem.Theorem 6.3 Let w be an ab-word with exactly k b's. Then[w] = Xr2Rk(�1)h(r) � rn(w)+1:Example 6.4 Let w = babbaa. Then n(w) = (0; 1; 0; 2) and n(w) + 1 = (1; 2; 1; 3),so [w] = 1 � 22 � 3 � 43 � 1 � 22 � 3 � 33 � 1 � 22 � 2 � 33 � 1 � 12 � 2 � 33+1 � 22 � 2 � 23 + 1 � 12 � 2 � 23 + 1 � 12 � 1 � 23 � 1 � 12 � 1 � 13= 261:Proposition 6.5 The bracket evaluated on the word bkam is given byhbkami = k+1Xi=1(�1)k+1�i � S(k + 1; i) � i! � im;where S(k + 1; i) denotes the Stirling numbers of the second kind.Proof: Let Rk;i be the set fr 2 Rk : rk = ig. Then the cardinality of Rk;i isgiven by �ki�. Let r be an element of Rk;i. For 1 � q � i let aq be the number ofentries in r that are equal to q. That is, aq = jfj : rj = qgj. Now aq � 1 and12



a1 + � � �+ ai = k+ 1. That is, (a1; : : : ; ai) is a composition of the integer k+ 1. Wenow have Xr2Rk;i r1 � � � rk = X 1a1 � 2a2 � � � iai= S(k + 1; i) � i!;where the second sum ranges over all compositions a1 + � � � + ak = k + 1, and thelast equality is by Exercise 16 in [23, Chapter 1].Observe that n(bkam) = (0; : : : ; 0;m). Hence by Theorem 6.3 we havehbkami = Xr2Rk(�1)h(r) � rn(w)+1= k+1Xi=1 Xr2Rk;i(�1)h(r) � r1 � � � rk�1 � rk � im= k+1Xi=1(�1)k+1�i � S(k + 1; i) � i! � im: 2The identity in Proposition 6.5 can be inverted to yield the following corollary.Corollary 6.6 Let c(n; k) be the signless Stirling number of the �rst kind, that is,the number of permutations in Sn with exactly k cycles. Then for n � 1n�1Xk=0 c(n; k + 1) � [bkam] = n! � nm:This corollary is equivalent to[(b+ 1) � � � (b+ n� 1) � am] = n! � nm;which may be proven directly.7 Some remarks on Genocchi numbersFinally we mention that the number of permutations in S2n+1 with alternating ex-cedances, that is, permutations with excedance word (ba)n = baba � � � ba, is equalto the Genocchi number G2n+1. This follows by comparing our Theorem 6.3 withProposition 1 in [5].It may also be interesting to note that studying the excedance set of a permuta-tion � is equivalent to studying the descent bottoms set of �, de�ned byDesbot(�) = f�i : �i�1 > �ig;in the following sense: There are several bijections from Sn to Sn in the literaturetaking a permutation with excedance set S to a permutation with descent bottoms13
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