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Abstract

In previous work by the authors, new Mahonian statistics ENV, MAD and
MAK were defined on words and it was shown that ENV is equal to the
classical statistic INV and that the triple statistics (des,MAK,MAD) and
(exc, DEN, ENV) are equidistributed over any rearrangement class of words.
Here, exc and des are the classical Eulerian statistics, while DEN is Denert’s
statistic. In addition, a bijection between the symmetric group and sets of
weighted Motzkin paths was used to give a continued fraction expression for
the generating function of (exc, INV) or (des, MAD) on the symmetric group.
These results are extended to the case in which the letters of the alphabet
used are divided into two classes, large and small, with corresponding
changes to the definitions of the above statistics.

1 Introduction

Let ¢ = (¢1,¢2, ..., ¢m) be a sequence of non-negative integers with n = ¢; + ¢ +
-+ + ¢ Denote by R(c) the set of all rearrangements of the (non-decreasing)
word 192%2 ... m®. In [3], some new Mahonian statistics MAD, MAK and ENV on
R(c) were introduced and the following results were proved.

Theorem A. For all w € R(c), we have ENVw = INV w.

Theorem B. The triples (des, MAD, MAK) and (exc, INV, DEN) are equidistributed
on R(c).

In fact, a bijection ®y was constructed on R(c) such that for all w € R(c),
(des, MAD,MAK) w = (exc, INV, DEN) Oy (w).

In [1, 2, 4, 5], the statistics des, exc, MAJ, DEN and INV were extended to
the case in which the letters in [m] :={1,2,...,m} are divided into two classes.
Namely, let £ be a non-negative integer such that & < m and put £ = m —k. The
letters 1, 2, ..., ¢ are called small and the letters £ + 1, ..., m are called large.
In counting descents and excedances, one counts strict inequalities between small
letters, but equalities and inequalities between large letters—see below for the
details. Then k-extended statistics desg, excy, MAJ;, DENg and INVy are defined,
which reduce to their more familiar Eulerian and Mahonian counterparts in the
case k = 0. Further, the pairs (desg, MAJ;) and (excg, DENg) are equidistributed
on R(c). It is the purpose of this paper to k-extend the results of [3]. We will
define statistics MADy, MAKj; and ENVj and prove the following results.

Theorem 1 For all w € R(c), we have ENVy w = INV; w.

Theorem 2 The triples (desy, MADy, MAKy) and (excy, INVy, DENy) are equidis-
tributed on R(c).



We will begin by recalling the definitions of k-descent and k-excedance from
[1]. Let 1 < ¢ < m and w = ayay...a, € R(c). Let W = byby...b, be the
non-decreasing rearrangement of w. It is convenient to introduce a new small
letter * such that ¢ < * < £+ 1, and to put wx = ajas...a,*. Thus we write
ant1 = *. (We use this convention throughout the paper.) We also introduce the
following partial ordering on [m]* = [m] U {*}.

Definition 1 If a,b € [m] then a < b means either a < b or a = b with b large.
Thus a £ b means either b < a or a = b with b small.

Definition 2 lLet w = aias...a, be a word with W = bby...b,. A k-descent in
the word w is a triple (i,a;,a,41), where 1 <1 < n, such that a;4; < a;. Here i
is called the k-descent place, a; is called the k-descent top and a;41 ts called the
k-descent bottom. A k-excedance in w is a triple (i,a;,b;), where 1 < i < n, such
that b; < a;. Here © is called the k-excedance place, a; ts called the k-excedance
top and b; is called the k-excedance bottom. The numbers of k-descents and
k-excedances in w are denoted by des, w and excy w respectively.

The k-descent set of w, Dy(w), is the set of k-descent places. The k-excedance
set of w, Ex(w), is the set of k-excedance places.

This is a slight change of wording from [1].

Definition 3 The k-major index of w is

MAJ,w= Y i

Recall the k-extensions of Imv and INV from [4] and [5]:

Definition 4

INVpyw = #{(L,j)|l<],a]-<CLZ}+#{Z|CLZ>£},
Imvyw = #{(1,j) |1 <j,a; Aa;}

Here, #5 denotes the number of elements in the set 5.

Let iy < i3 < --- < 1. be the increasing sequence of elements of Ej(w) and
let j; < j2 < +++ < jn_. be the increasing complementary sequence in [n]. We
form the excedance subword wg = a;,a;,...a;, and the non-excedance subword
wy = a;,a;, ...a; . of w. Put

Ebotyw = Z 7,

1€y (w)

that is, Ebot; w is the sum of the k-excedance places in w.



Remark 1 Note that Eboty w is equal to the sum of the values of the k-excedance
bottoms in @ if there are no large letters in w as in [3], but this is no longer true
if there are large letters in w, because of the * and because we code equal large
letters from right to left (See Section 2.1 below). However, we use the notation
Eboty to be compatible with [3].

The following definition of DENy w, from [5], is equivalent to the definition of

2.

Definition 5
DEN; w = Ebot, w 4+ Imvy wg + INVE wy.

We can write the definition of DENg w in a slightly different way, using the fol-
lowing definition.

Definition 6 Let w = ajay...a, be a word. If v is a k-excedance place in w
then the k-imversion bottom number of ¢ is the number of places j such that
1 <y <ianda; A a;. Ifiis not a k-excedance place in w then the k-inversion
top number of ¢ s the number of places j such that t < 3 < n+1 and a; < a;.
The k-side number s; of i (in w) is the k-imversion bottom number or k-inversion
top number of 1 as appropriate.

Clearly, the sum of the k-imversion bottom numbers for the letters in wy equals
Imvy wg, while the sum of the k-inversion top numbers for the letters in wy equals
INVE wy. We write

Ine,w = TImvywg + INVE wy

= s s

Thus DEN, w = Ebot, w + Inei w.

Example 1 Let
w=24413113, sothat w=11123344.

Take k = 2. Thus 1 and 2 are small, while 3 and 4 are large. There are 2-descent
places at + = 2, 3, 5 and 8. Thus desy; w = 4 and MAJ,w =243+ 548 = 18.
There are 2-exedance places at ¢« = 1, 2, 3 and 5. Thus excaw = 4 and

Ebotyw = 11. Now, one readily checks that the sequence of side numbers of w
is (0,0,0,0,2,0,0,1). Hence Ine; w = 3 and DEN; w = 14.



2 Further Mahonian statistics

2.1 Height and value

For each letter a, we define the height of a in w as
hi(a) = hgw(a) =1+ #{j |1 <j<n,a; <a}.
It is easy to see that
i € Ey(w) if and only if ¢ < hygp(a;).
If1 <1< n+1, we define the value of the i-th letter in w by

Uk, = 'Uk,i('w) = #{j |] <n+l,a; < Gz’}

#{j|1<j5<i,a;=a;}, ifa; small;
#{jli<j<n,a;=a;}, ifa; large.

Thus the height of a letter in a word is a function of the letter, not of its position
in the word, whereas the value of a letter does depend on its position in the word.
Hence we can strictly only speak of the value of a position in a word.

We will normally supress the argument w to vy and hy.

Using the relation < we can write

i =1+ #{jli<g<n+la; <at+#{j|1<j<ia £La;}. (1)
Notice that the word
VR(W) = Vk1Vk2 . Uk Ukt

is a permutation. In fact, our definition of vi(w) amounts to “coding” wx* to
a permutation by coding equal small letters from left to right and coding equal
large letters from right to left. The equation

Dy(w) = D(vi(w)), (2)

which is easily verified, is the motivation for this coding. Note that, if w € S, is
a permutation and 1 <7 < n, then

Uk = kldi) = a; +1, ifl<a; <n.

Further, vg 1 =€ + 1.

Example 2 For the word w =2 441 3 1 1 3 considered in example 1 with
k=2, we have vo(w) =498 172365, Also ho(l) =1, ha(2) =4, hao(3) =7
and ho(4) = 0.



2.2 The statistic ENV,,

Now we put

Edlfk w = Z (hk(az) — Z)

iEEk(w)

and we define a new statistic ENV, w by

Definition 7
ENV, w = Edif, w + Imvy, wg 4+ INV, wy.

We can also write ENV, w = Edify w + Iney w. For k& = 0, when there are no
large letters, we have ENV, = ENV, the statistic defined in [3].

Example 3 For the word w =2441311 3 considered above, we have Edif; w =
A-1)4+09-2)+(9-3)+(7—5) =18 and ENVaw = 18 + 3 = 21.
One can easily check that INVy w = 21.

Lemma 3 For any word w we have

ENVyw =Y (vg; — 1)+ INVywg + INVg wy — 6,
i€Fg(w)
where § is the number of large letlers in wy.

Proof: Suppose that wg contains d, letters equal to a, for 1 < a < m. Then one
can easily verify that

{ m
d, d, +1
ImvkwE—INkaE:Z( ) — Z ( + )
a=1 2 a=I[+1 2
and l
dy o (d,
> - mle) =2 () - 3 (%)
1€ B (w) a=1 a=[+1
bearing in mind that the d, letters ‘a’ occurring in wg will be the left-most d,
letters ‘a’ that occur in w. Hence the result follows. []
We can now prove that ENV; and INVy are identical.
Proof of Theorem 1: From Lemma 3 we must show that
o (vki—1) = S+#{(,5)]i<j<n,a; < a;,i € Ey(w),j & Ep(w)}

= 6+ > #{jli<ji<mna;<a,jg Eyw)}

i€ By (w)
= o+ Z (#{]|7<]§77,(1]-<(12}
i€ B (w)
~#{ i <i <ma; <ai,i € Hy(w)}). (3)

6



Now, since 1 = #{j | j <1}, it follows from equation (1) that
> (wi—1) = Y GHiln+12j>i0;<a;}

i€ By (w) i€EFL(w)
—#{Jjj<i,a; <a;})

= 0+ > (#Hiln>j>ia;<a;}

—H#L | J <ijai < a;}). (4)

Hence, comparing equations (3) and (4), we need only to show that

Yo #{jli<i<n.ag;<ai,j€E(w)}= > #{jlj<ia<a;}

i€EL(w) 1€ER(w)

But each of the sums in the above equation is INVy wg — 4. []

2.3 The statistics MAD; and MAK}

Let w = aqay...a, be a word, with a,4; as usual. By analogy with Ebot; w and
Edif;, w we put
Dbot, w = Z Vkid1

and

Ddif, w = Z (hi(ai) — vgiv1)-

iEDk(w)

Definition 8 Let w = ajas...a, be a word. For 1 < i < n, the (right) k-
embracing number ¢, in w is

o — #{ili<j<nya <a;<a;}, ifa;is small;
A #{J i <j<nya4 <a; <aj}, ifa;is large.

The (right) k-embracing sum of w is
Respw — e + -+ + e,.
Alternatively, we may if we wish define ¢; for both small and large letters a; by
ei=#{Jj|i<j<nyaj41 <aj,a; £a;}.

Definition 9 Let w = ayay. .. a, be a word. The k-descent (j,a;,aj41) embraces
a; if ajy1 < a; and a; £ a;.

So e; 1s the number of k-descents in w to the right of a; that embrace a;.
The statistics MAD; and MAK; can now be defined as follows:



Definition 10

MAD; w = Ddify w4+ Resy w;
MAK, w = Dbotgw + Res; w.

For £k = 0 we have MAD; = MAD and MAK; = MAK as defined in [3]. Note
that, for any word w, it follows from Equation (2) and from

Resy, w = Resy, vg(w) (5)
that
MAKj w = MAKj, v, (w).
However, it is not in general true that MAD; w = MADy vi(w).
In Section 3, we will produce a bijection ®; on S,, such that, for all # € &,,,

we have
(desk, MADy, MAK) ™ = (excg, INVE, DENg ) ®r (7).

In Section 4, we extend the definition of ®; to words, thereby proving Theorem
2.

Example 4 Consider the word
w=31412134,
with £ = 2. Then
va(w)=719243685

and hy(1) =1, hy(2) =4, hy(3) = 7, hy(4) = 9. Thus Dbot,w = 1424345 =11
and Ddifow = (7—1)+(9—-2) 4+ (4 —3)+ (9 —5) = 18. The sequence of
2-embracing numbers of w is (2,0,0,0,0,0,1,0,0), so Res;w = 3. Therefore
MADyw = 18 + 3 = 21 and MAKy w = 11 + 3 = 14.

3 The bijection for permutations

Let # = ayay...a, € S,. Then the set of k-descents in m equals the set of
descents in mx. Hence Dboty 7 = Dbot mx and Ddif, # = Ddif 7. Moreover, if

(e1,€2,...,€,) is the sequence of right k-embracing numbers of m, the sequence
of right embracing numbers of m+ is (e, ez,...,€,,0). Thus Resym = Resmx.
Therefore

(desy, MADg, MAK) ™ = (des, MAD, MAK) 7 * . (6)

Further, since excy m = excy T, where

- (1 2 ... 4 I4+1 L. n)
T =

ayp do P/ Aoy P /7

8



and excm* = exc T, where

— (1 2 ... * [(4+1 ... n—1 n)

Tk =
aq a9 . ap A4 ap42 . (£7% *

it follows that there is a one-to-one correspondence between the k-excedances of
7 and the excedances of w*. For, if a; =7 > £ then a; > 7 — 1. Thus the set of
k-excedance places of 7 equals the set of excedance places of 7* and the set of
k-excedance tops of 7 equals the set of excedance tops of m*. (The corresponding
equality does not hold for the excedance bottoms, but they play no explicit part
in our statistics.) So Ebotym = Ebot % and Edify 7 = Edif 7. Similarly, we
have that Iney m = Inew*, so that

(excy, ENVg, DENg) m = (exc, ENV,DEN) 7 * . (7)
In [3], a bijection ® was constructed on S, such that, for all 7 € S,,,
(des, MAD,MAK) 7 = (exc, ENV,DEN) ®(m). (8)

In order to prove Lemma 4 below, we briefly describe the bijection ®. Let F,
F', G and (' denote respectively the sets of descent bottoms, descent tops, non
descent bottoms and non descent tops for 7. Let f and g be the non-decreasing
words formed from the letters of F' and G respectively. Let " and ¢’ be the words
formed from the letters of F' and G’ respectively, whose imversion bottom and
inversion top numbers respectively are the embracing numbers of those letters in

=71 7))

Then the columns to the left of the bar are excedances, while those to the right

7. Form the biword

are non-excedances. Finally, rearrange the columns of « so that its first row is
increasing and read off the permutation ®(7) from the second row.
The bijection @ has the following property.

Lemma 4 Lel 7 = ayay...a, € S, and let ®(w) = byby...b,. Then b, = a,.
(That is, the bijection ® fizes the last letter of a permutation.)

Proof: Let 7 = ajay...a, € S,. Clearly, a, is a non-descent top and its (right)
embracing number is zero. Hence a,, will be a letter in ¢’ and all the non-descent
top letters smaller than a, will be to the left of a, in ¢’. It remains to show
that any non-descent top letter larger than a, will not be the rightmost letter
in ¢. If a; (1 < n) is a non-descent top letter larger than a,, then there is a
letter a; (i < j < n) such that a; < a; (hence a; > a,), for, otherwise, a; would
be a descent top. Let a; be the smallest such letter. Thus a; > a;4, and the
embracing number of a; must be larger than or equal to 1. This proves that a;
cannot be the rightmost letter in ¢’.  []



Hence we define a bijection &, on S, by
T mk > O(mk) = 7'k o

where 7’ is a permutation. It follows from Equations (6), (7) and (8) and Theorem
1 that
(desk, MADg, MAKE) T = (exck, INVg, DEN) @y (7). (9)

This proves Theorem 2 in the case of permutations, that is, if all ¢; < 1.

We note for future reference that & satisfies a stronger property than that
specified in equation (9), namely that the set of k-excedance places of @, (7) equals
the set of k-descent bottoms of 7, the set of k-excedance tops of ®x(m) equals

the set of k-descent tops of © and the sequence of k-side numbers sy, s4,..., s, of
®,(m) is a permutation of the sequence of k-embracing numbers e, €, ..., €, of
.

Example 5 Consider the permutation # = 6 1 8 24 3 57 with £ = 4. Thus
mk=61824357 %, where 4 < * < 5. We may more conveniently write 7+ as
7=719243685, apermutation on {1,...,9}. Now, applying the bijection
of 3] gives ®(7) =7 =489172365 Thusa*=47816235 % and
Qy(mr)=7"=47816235.

Although we can decompose @, as the composition of two bijections between the
symmelric group S,, and the weighted Motzkin paths as in [3], this decomposition
does not seem to yield an interesting continued fraction expansion. Here we just
record some partial results in this direction.

Let
Afn(tv q) — Z 1EXCk TrqINVk ™

TES,
and .
m _ .
Ap(z,y,t,q) =D (k)xkym FAR (1, q).
k=0

The first values of the polynomials A,,(z,y,t,q) are as follows:

Ai(z,y,t,q) = y+alg
As(z,y,t,q) = Y1 +tq) + 2eyt(q+ ¢*) + 2*(tq” + 1°¢%);
As(z,y,tq) = ¢ (14 (24 ¢ + )+ 1)
+3zy*((g+ ¢* + ¢ + ¢t + (¢* + ¢*)1?)
+32%y((¢* + "N+ (¢ + ¢ + ¢+ O))
+$3<q5t+ (2q4 + q5 + q6>t2 + q3t3>-
It has been noted (see [1]) that

um _ (=t exp(uy(l = 1))
mZZ:O mAm(ﬂ:’ y,t, 1) = 1 —texp(u(z +y)(1 — 1))

10



Therefore, by applying the addition formula of Rogers — Stieltjes (see [6]) we can
derive the following result.

Proposition 5 The ordinary generating function of A,,(x,y,t,1) has the follow-
ing Jacobi continued fraction expansion:

A, t,1)u
Z TyY,t, )\1U2 )

T)’L>0 1 _ bou _

At
1 —byu— 1

where forn >0,
b, = (tz+y)(n+1)+(z+ty)n
Mgt = (n+ 1)z +y)*

A combinatorial proof of the above result will eventually produce a ¢g-analogue
of Proposition 5. More precisely, set [n], = 1+¢+---+¢" " forn > 1 and [0], = 0.

Since
Al (1,9)= > ¢"F 7 =4 A% (1,9),
TESn
hence
m ~ .
Amtay,LQ)==§:(k)(¢wkM”kA&(hq)=(¢v+y) A2 (1,q).
k=0 ’

We derive then from [3, Theorem 10] the following result.

Proposition 6 The ordinary generating function of A, (x,y,1,q) has the follow-
ing Jacobi continued fraction expansion:

ZA Ty, 1 7q = e >
1

Apyru?

1 —b,u—

where for n >0,

2
3
Il

q"([n + 1, + [nlo)(qz + y),
Mgt = ¢+ 1]5(qz +y)".

11



However, the series °, o Am(z,y,t, ¢)u™ does not seem to have a nice Jacobi
continued fraction expansion. In fact, suppose

1
> Ap(z,y b qu™ = 5 ;
m>0 )\1u
= 1 — bou —
Apgr
1 —bu— ik
then we find by = tqz + y, Ay = q(qz + y)Qt and
bi = qW’q+yit+y’+ a7 + g

+a2°tq* — 2y® + 3qry’ + 37y’ ¢
+ay*t + 3yt + 2*yq + 3yqta’
+31q* %y + 32°ylq® — 2*ytq)/(gz + y)*.

4 Working with words

Let w = ajay...a, € R(c) and let 7% = vp(w) = vivg...0,0,41 as defined
in Section 2.1. (Here, we are identifying % with v,1:.) Apply the bijection @

!

of Section 3 to 7 to obtain a permutation 7’ = vivl...v/. Finally, decode =’

nt

by replacing each letter x of 7’ by a letter a; of w such that vy ;(w) = z, to
!. The mapping @ w is then defined on R(c) by

obtain a word w’' = d{d}...al.

Qpw(w) =w'.

We introduce two pieces of notation to aid in the proof of Theorem 2. Firstly,
let the rightmost occurence of the largest small letter £ in w be coded to the letter
L. Then for any letter a; in w, a; is small if and only if v; < L. Secondly, write
6 as the decoding map. Thus a; = 0(z) if vy (w) = .

Proof of Theorem 2: We shall show that ®; is a bijection on R(c) such that
for all w € R(c), we have

(desk, MADE, MAKy) w = (excg, INVg, DENg) ®p w (w). (10)

By equation (2), we have Dy(m) = Dy(w), and moreover the sequence of k-
embracing numbers of 7 equals the sequence of k-embracing numbers of w. By the
remark following the proof of equation (9), it follows that the set of k-excedance
places of 7’ equals the set of k-descent bottoms of w, the set of k-excedance tops
of 7’ equals the set of k-descent tops of w and that the sequence of k-side numbers
of 7’ is a permutation of the sequence of k-embracing numbers of w.

To complete the proof of equation (10), we must look in more detail at the
construction of @y, derived from the construction of ® given above. Let F,

12



F', GG and G’ denote respectively the sets of descent bottoms, descent tops, non
descent bottoms and non descent tops for 7. We note that each of the above sets
is the image under v; of the corresponding k-set for w+*. Let f and g be the non-
decreasing words formed from the letters of F' and G respectively. Let f" and ¢’
be the words formed from the letters of F’ and G’ respectively, whose imversion
bottom and inversion top numbers respectively are the embracing numbers of
those letters in 7, that is, the k-embracing numbers of the corresponding letters

= (71 4)

Then the columns to the left of the bar are excedances, while those to the right
are non-excedances. Finally, rearrange the columns of « to form the biword 7/

in w. Form the biword

and read off the permutation 7'+ from the second row. We must show that the
excedances in «a correspond precisely to the k-excedances in w’.

First we note that the column <Z> of «a corresponds to the column <Z>

Z) or to the column (a%})—l) of 7/

of 7'+ and thence either to the column <

according as a < L or a > L.

Case 1: The column <Z) of a is an excedance.
Then a is a descent bottom and b is a descent top in 7.
Case 1(i): b < L.

Then a < L. So there is a column <Z> in 7 corresponding to a column

<Z(<Z§> in w'. Now the proof that (ggg;) is an excedance (which in this case is

the same as a k-excedance, as 8(b) is small), follows exactly as in Section 4 of [3].
Case 1(ii): b) > L.

If @ < 7 then, as before, the corresponding column in w s <‘Z(<Z§>, which
is a k-excedance as 0(a) < 6(b). If @ > L then, as a < b, a +1 < b and so
9(@ + 1) < 9(6). Therefore the corresponding column (9<Z<1—>1)> of w' is a

k-excedance, as 6(b) is large.

Case 2: The column <Z

Then a is a non descent bottom and b is a non descent top in .
Case 2(i): b < L.
Then a > b, so that §(a) > 0(b). Now if a > L then the column <

9(a + 1)
0(b)

> of « 1s a non-excedance.

a—l—l)
b

occurs in 7’ and the corresponding column in w’ is ( ), which is a non-

13



k-excedance as 6(b) is small. If @ < L then the column <a

b
ZEZ)) >’ which is a non-k-excedance as 0(b) is

) occurs in 7 and

the corresponding column in w’ is <

small.
Case 2(ii): b > L.
Then also @ > L, so the column in w’ corresponding to the column (Z) of
— . (f(a+1)
!
' is < o(b)
smallest letter such that by > b, 6(b;) = 6(b) and b; occurs to the right of b in

the second row of a (that is, in the word ¢'). We will show that no such letter by
exists. Now such a b; must occur to the left of b in the word w, as large letters

), which we must show is a non k-excedance. Now, let b; be the

in w are coded from right to left. So the k-embracing numbers of b and b, in w
satisfy e(by) > e(b). But as by occurs to the right of b in g and there is no letter ¢
to the right of b in g in the range b < ¢ < by, the inversion top numbers of b and
by in g satisfy s(b;) < s(b). By the construction of g we have s(b;) = e(b;) and
s(b) = e(b). Hence e(b;) = e(b). Hence there can be no letter between b; and b
in w that is greater than b. Hence b; is a descent top, and cannot be a letter of
g. Hence we have shown that no letter ¢ > b with 6(c) = 6(b) occurs to the right
of bin g. Therefore, if b occurs in the p-th column from the right of g, we have

p < 1deb)+#{jlje G, 0(a;)>0(b)}
< 14+ #{j|je G b(a;)>0(b)}.

For to every k-descent of w to the right of b that embraces b there corresponds a
non k-descent bottom of w to the right of w that is greater than b, and to every
non k-descent top of w that is greater than b there corresponds a non k-descent
bottom of w that is greater than b. Thus we have (9((1 + 1) > 9(6) as required.

It now follows that the set of k-excedance places in w' equals the set of ex-
cedance places in 7'*, that is, the set of k-excedance places in #’. Similarly, the
set of k-excedance tops in w' equals the set of k-excedance tops in 7. Now,
by the previous argument, w! = 6(f') and w) = 6(¢") (where ¢" is obtained
from ¢ by stripping off the final letter *.) By the proof of Case 2(ii) above,
INV, wl, = INV@'%y, and by a similar argument, Imv; w, = Imva'*,. Thus
Ine, w' = Inen’* = Ine, ’. Hence equation (10) follows.

To complete the proof, we must show that @ is a bijection. The proof is
not essentially different from that presented in [3] for the mapping @, that is,
for the case & = 0, but for completeness we set down the proof here.

It clearly suffices to show that @y is an injection. Suppose that for words
wy and wy we have

wy > T = vp(wy) = T = O(my) W’
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for t = 1,2. Since the map w; — m, is clearly an injection, it suffices to prove that
7y = m). We refer to the sets and words involved in the construction of @ w(w;)
by Fi, fi, Gy, ete., for t = 1,2. Now F;, = E(n}) = F(w'), = {i1,12,...,1,}, say,
for t = 1,2, and G} 1s the complementary set. Hence the words f; and ¢; can
be determined. Further, f/ is an inverse image under 6 of the word a;, a, ... a;,,
and we have a similar result for g;. We can calculate the side numbers of 7}, as
these equal the side numbers of w’. Now we can recover f/ and g;, provided that
we can determine the relative size of any two letters of these words that have the
same image under §. Suppose that 0(v]) = 0(v}) = a for letters v} and v} of 7.
We distinguish several cases.

1. Suppose that s(v{) > s(v;). Then v; must occur to the left of v} in the word

m¢. Hence, by the way in which the value v(w;) is defined, v{ > v} or v} < v;
according as a is large or small.

2. Suppose that s(v}) = s(v’).

(a) If vl € F{ and v’ € G} then v/ is a descent top in 7m; and v} is not
; must occur to the left of v} in the
permutation m;, otherwise s(v}) = e(vi) > e(v]) = s(v}). Thus v} > v}

a descent top in m;. Hence v

or vj < v} as in the previous case.

(b) Let vj,v; € G} with ¢« < j. We may assume that 6(v],) # a for any
m between ¢ and j. Then v] < v}, for otherwise (z,7) would be an

inversion in 7; and we would have s(v;) # s(v}).

(¢) Let vl,v; € F/ with i« < j. Then both v and v/ are descent tops in

(2
7. Hence a must be a large letter. As in the previous case, we have
! !
v; < Uj.

Hence f; and g; are completely determined by w’. Thus 7] = 7}, and @y is an
injection.
This completes the proof of Theorem 2. []

Example 6 Consider the word w =3 14121 3 4 of example 4, with £ = 2.
Write 7% = vo(w) =719243685. As in example 5 we have 7' = ®y(m)* =
48917236 5. Decoding m then gives w' = @5 (w)=24413113. From

examples 1, 3 and 4 we have

(desy, MAD2,MAKy) w = (excy,INVy, DEN;) w'
= (4,21,14).
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