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Abstract. We call a Stieltjes continued fraction with monic monomial nu-
merators a Catalan continued fraction. Let ek(π) be the number of increasing
subsequences of length k + 1 in the permutation π. We prove that any Cata-
lan continued fraction is the multivariate generating function of a family of
statistics on the 132-avoiding permutations, each consisting of a (possibly in-
finite) linear combination of the eks. Moreover, there is an invertible linear
transformation that translates between linear combinations of eks and the cor-
responding continued fractions.

Some applications are given, one of which relates fountains of coins to
132-avoiding permutations according to number of inversions. Another re-
lates ballot numbers to such permutations according to number of right-to-left
maxima.

1. Introduction and main results

We denote by Sn the set of permutation on {1, 2, . . . , n}. Given π = a1a2 · · · an in
Sn and τ = b1b2 · · · bk in Sk, we say that π has j occurrences of the pattern τ if there
are exactly j different sequences 1 ≤ i1 < i2 < · · · < ik ≤ n such that the numbers
ai1ai2 · · ·aik

are in the same relative order as b1b2 · · · bk. We use the symbol τ also
for the permutation statistics defined by τ(π) = j if π has j occurrences of the
pattern τ . If τ(π) = 0 we say that π is τ-avoiding.

Everywhere in this paper a permutation on S ⊂ N, with |S| = n, will be identified
with the permutation in Sn whose letters are in the same relative order as the
letters of the given permutation on S. As an example, the permutation 17358 on
{1, 3, 5, 7, 8} is identified with 14235 in S5.

Let Sn(132) be the set of 132-avoiding permutations of length n, and let S(132) =⋃
n≥0 Sn(132). Suppose π = π1nπ2 ∈ Sn(132). Then each letter in π1 must be

greater than any letter in π2, where both π1 and π2 must necessarily be 132-avoiding.
Conversely, every permutation of this form is clearly 132-avoiding. This observation
immediately yields a functional relation for the generating function, C(x), for the
number of 132-avoiding permutations according to length, namely

C(x) = 1 + xC(x)2. (1)

Readers unfamiliar with the symbolic method implicitly used in this derivation may
consult, for example, [3]. Solving for C(x) in (1) we obtain

C(x) =
1 −√

1 − 4x

2x
,

which is the familiar generating function of the Catalan numbers, Cn = 1
n+1

(
2n
n

)
.

Thus we have derived the well known fact [5, p. 239] that the cardinality of Sn(132)
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is the nth Catalan number. Rewriting (1) in the form

C(x) =
1

1 − xC(x)

and iterating this identity we arrive at the formal continued fraction expansion

C(x) =
1

1 − x

1 − x

. . .

,

which is the simplest instance of the continued fractions studied in this paper.
A Stieltjes continued fraction is a continued fraction of the form

C =
1

1 − m1

1 − m2

. . .

,

where each mi is a monomial in some set of variables. We define a Catalan continued
fraction to be a Stieltjes continued fraction with monic monomial numerators.

For k ≥ 1, we denote by ek−1 the pattern/statistic 1 2 · · ·k. Thus e0(π) is the
length |π| of π, and e1(π) counts the number of non-inversions in π. We also define
e−1(π) = 1 for all permutations π (that is, we declare all permutations to have
exactly one increasing subsequence of length 0).

The main purpose of this paper is to show that any Catalan continued fraction
is the multivariate generating function of a family of statistics, consisting of linear
combinations of the eks. Moreover, there is an invertible linear transformation
that translates between linear combinations of eks and the corresponding continued
fractions.

A theorem of Robertson, Wilf and Zeilberger [12] gives a simple continued frac-
tion that records the joint distribution of the patterns 12 and 123 on permutations
avoiding the pattern 132.

Generalizations of this theorem have already been given, by Krattenthaler [6],
by Mansour and Vainshtein [8] and by Jani and Rieper [4]. However, in none of
these papers is there explicit mention of the joint distribution of the statistics under
consideration. We now state this theorem; it is a generalization of [12, Theorem 1].
Moreover, this theorem is implicit in [8, Proposition 2.3] and it also follows, with
minor changes, from the corresponding proofs in [4, Corollary 7] and [6, Theorem 1].
Theorem 1. The following continued fraction expansion holds:∑

π∈S(132)

∏
k≥0

x
ek(π)
k =

1

1 − x
(0
0)

0

1 − x
(1
0)

0 x
(1
1)

1

1 − x
(2
0)

0 x
(2
1)

1 x
(2
2)

2

1 − x
(3
0)

0 x
(3
1)

1 x
(3
2)

2 x
(3
3)

3

. . .

in which the (n + 1)st numerator is
n∏

k=0

x
(n

k)
k .
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Proof. Let π = π1nπ2 ∈ Sn(132). Since every increasing subsequence of length
k + 1 is contained either in π1, or in π2, or may consist of a subsequence of length
k in π1 ending with the n in π1nπ2, we have

ek(π) = ek(π1) + ek−1(π1) + ek(π2), k ≥ 0.

Let x = (x0, x1, . . .), where the xis are indeterminates, and let

w(π;x) =
∏
k≥0

x
ek(π)
k .

Then w(π;x) = x0w(π1;x∗)w(π2;x), where x∗ = (x0x1, x1x2, . . .). Consequently,
the generating function

C(x) =
∑

π∈S(132)

w(π,x)

satisfies
C(x) = 1 + x0C(x∗)C(x),

or, equivalently,

C(x) =
1

1 − x0C(x∗)
,

and the theorem follows by induction. �
To state and prove our main theorem we need some definitions: Let

A = {A : N × N → Z | ∀n (Ank = 0 for all but finitely many k)},
be the ring of all infinite matrices with a finite number of non zero entries in each
row, with multiplication defined by (AB)nk =

∑∞
i=0 AniBik.

With each A ∈ A we now associate a family of statistics {〈e, Ak〉}k≥0, defined
on S(132), where e = (e0, e1, . . .), Ak is the kth column of A, and

〈e, Ak〉 =
∑

i

Aikei.

Let q = (q0, q1, . . .), where the qis are indeterminates. For each A ∈ A and
π ∈ S(132) we define:

(1) the weight µ(π, A;q) of π with respect to A, by

µ(π, A;q) =
∏
k≥0

q
〈e,Ak〉(π)
k ,

(2) the multivariate generating function, associated with A, of the statistics
{〈e, Ak〉}k≥0, by

FA(q) =
∑

π∈S(132)

µ(π, A;q),

(3) the Catalan continued fraction associated with A, by

CA(q) =
1

1 −
∏

qA0k

k

1 −
∏

qA1k

k

1 −
∏

qA2k

k

1 −
∏

qA3k

k

. . .

.

Note that the product in part 1 above is finite by the definition of A together
with the fact that ei(π) = 0 whenever i > |π|.

In what follows we will use the convention that
(
n
k

)
= 0 whenever n < k or k < 0.
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Theorem 2. Let A ∈ A. Then

FA(q) = CBA(q),

where B = [
(

i
j

)
], and conversely

CA(q) = FB−1A(q).

In particular, all Catalan continued fractions are generating functions of statistics
on S(132) consisting of (possibly infinite) linear combinations of eks.

Proof. We have

µ(π, A;q) =
∏
k≥0

q
〈e,Ak〉(π)
k

=
∏
k≥0

∏
j≥0

q
Ajkej(π)
k

=
∏
j≥0

(∏
k≥0

q
Ajk

k

)ej(π)

.

Let xj =
∏

k≥0 q
Ajk

k . Applying Theorem 1 we get a continued fraction in which the
(n + 1)st numerator is

∏
j≥0

x
(n

j)
j =

∏
j≥0


∏

k≥0

q
Ajk

k



(n

j)

=
∏
k≥0

q
〈((n

0),(n
1),(n

2),...),Ak〉
k ,

which is the (n + 1)st numerator in CBA(q). Hence

FA(q) = CBA(q).

Observing that B−1 = [(−1)i−j
(

i
j

)
] ∈ A we also get

CA(q) = FB−1A(q).

�

Corollary 3. If f =
∑

k≥0 λkek with λk ∈ Z, then the generating function for the
statistic f over S(132) admits the Catalan continued fraction expansion∑

π∈S(132)

xf(π)t|π| =
1

1 − xf(e0)t

1 − xf(e1)−f(e0)t

1 − xf(e2)−f(e1)t

. . .

.

where in the continued fraction ek−1 is the permutation 12 · · ·k.

Proof. The result follows from Theorem 2 and the observation

f(en) − f(en−1) =
∑

k

λk

(
ek(en) − ek(en−1)

)

=
∑

k

λk

((
n + 1
k + 1

)
−
(

n

k + 1

))

=
∑

k

λk

(
n

k

)
.

�
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2. Dyck paths

Before giving applications of Theorem 2 we review some theory on Dyck paths
and their relation to 132-avoiding permutations.

A Dyck path of length 2n is a path in the integral plane from (0, 0) to (2n, 0),
consisting of steps of type u = (1, 1) and d = (1,−1) and never going below the
x-axis. We call the steps of type u up-steps and those of type d we call down-steps.
The height of a step in a Dyck path is the height above the x-axis of its left point.

A nonempty Dyck path w can be written uniquely as uw1dw2 where w1 and w2

are Dyck paths. This decomposition is called the first return decomposition of w,
because the d in uw1dw2 corresponds to the first place, after (0, 0), where the path
touches the x-axis.

In [6] a bijection Φ between Sn(132) and the set of Dyck paths of length 2n
is studied. This bijection, as a function defined on S(132), can also be defined
recursively by

Φ(ε) = ε and Φ(π) = uΦ(π1)dΦ(π2),

where π = π1nπ2 ∈ Sn(132) and ε is the empty permutation/Dyck path. For
example, letting Φ operate on the permutation 453612 we successively obtain

453612 → u453d12 → uu4d3du1d → uuuddudduudd.

In what follows, when we talk about a correspondence between a Dyck path and a
132-avoiding permutation, we will always mean the correspondence defined by Φ.

Using Φ we can express ek(π) in terms of the Dyck path corresponding to π.
Namely (see [6]),

ek(π) =
∑

d in Φ(π)

(
h(d) − 1

k

)
, (2)

where the sum is over all down-steps d in Φ(π) and h(d) is the height of the left
point of d. This can also be shown by induction over the length of π. Indeed, for a
nonempty 132-avoiding permutation π = π1nπ2, we have

ek(π) = ek(π1) + ek−1(π1) + ek(π2).

On the other hand, defining fk(w) =
∑

d in w

(
h(d)−1

k

)
for w = uw1dw2 we have

fk(w) =
∑

d in w

(
h(d) − 1

k

)

=
∑

d in w1

(
h(d)
k

)
+

∑
d in w2

(
h(d) − 1

k

)

=
∑

d in w1

(
h(d) − 1

k

)
+

∑
d in w1

(
h(d) − 1
k − 1

)
+ fk(w2)

= fk(w1) + fk−1(w1) + fk(w2).

Since ek(ε) = fk(ε), it follows by induction over the length of π that fk(Φ(π)) =
ek(π), which is the same as (2).

3. Applications

We now give some applications of Theorem 2. Some of these relate known con-
tinued fractions to the statistics ek, whereas others relate these statistics to various
other combinatorial structures.
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3.1. A continued fraction of Ramanujan. The continued fraction

R(q, t) =
1

1 − qt

1 − q3t

1 − q5t

1 − q7t

. . .

was studied by Ramanujan (see [10, p. 126]). It was shown in [2] that the coefficient
to tnqk in the expansion of R(q, t) is the number of Dyck paths of length 2n and
area k. Using the converse part of Theorem 2, we would like to find the linear
combinations of the statistics eks that have as bivariate generating function the
continued fraction R(q, t). Comparing R(q, t) with the CA(q) defined just before
Theorem 2, we have

A =




1 1 0 0 · · ·
3 1 0 0 · · ·
5 1 0 0 · · ·
7 1 0 0 · · ·
...

...
...

...
. . .


.

Since ∑
k≥0

(2k + 1)(−1)n−k

(
n

k

)
= δn0 + 2δn1,

where δij is the Kronecker delta, we get

B−1A =




1 1 0 · · ·
2 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .


,

and hence, recalling that the coefficient of the linear combinations of the statistics
ek are the columns of this matrix, we have

R(q, t) =
∑

π∈S(132)

qe0(π)+2e1(π)t|π|,

where we prefer to use two different notations e0(π) and |π| for the length of π.
Thus R(q, t) records the statistic e0 + 2e1 on 132-avoiding permutations. In fact,
the bijection Φ translates the statistic e0 + 2e1 into the sum of the heights of the
steps in the corresponding Dyck path, which in turn is easily seen to equal area.

3.2. Fountains of coins. A fountain of coins is an arrangement of coins in rows
such that the bottom row is full (that is, there are no “holes”), and such that
each coin in a higher row rests on two coins in the row below (see Figure 1). Let
F (x, t) =

∑
n,k f(n, k)xktn, where f(n, k) counts the number of fountains with n
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coins in the bottom row and k coins in total. In [9] it is shown that

F (x, t) =
1

1 − xt

1 − x2t

1 − x3t

1 − x4t

. . .
A straightforward application of Theorem 2 gives the following result.
Proposition 4. The number f(n, k) equals the number of permutations π ∈ Sn(132)
with (e0 + e1)π = k. Equivalently, f(n, k) equals the number of permutations in
Sn(132) with k − n non-inversions.

If we reverse each permutation in Sn(132) we see that f(n, k) also equals the
number of 231-avoiding permutations in Sn with exactly k − n inversions.

We also give a combinatorial proof of Proposition 4, by constructing a bijection
between the set of Dyck paths of length 2n and the set of fountains with n coins
in the bottom row. Let Ψ be the bijection that maps a Dyck path to the fountain
obtained by placing coins at the centre of all lattice squares inside the path, in the
way that Figure 1 suggests.

Figure 1. A fountain of coins and the corresponding Dyck path.

The ith slant line in a fountain is the sequence of coins starting with the ith
coin from the left in the bottom row and continuing in the northeast direction.
The height of a down-step thus corresponds to the number of coins in the slant
line ending at the left point of the down-step d. Now, e0 counts the number of
coins in the bottom row and

(
h(d)−1

1

)
is one less than the number of coins in the

corresponding slant line (see the end of Section 2). Thus e0 + e1 counts the total
number of coins in the fountain.

3.3. Increasing subsequences. The total number of increasing subsequences in
a permutation is counted by e0 + e1 + · · · . An application of Theorem 2 gives the
following continued fraction for the distribution of e0 + e1 + · · · :∑

π∈S(132)

xe0π+e1π+···t|π| =
1

1 − xt

1 − x2t

1 − x4t

1 − x8t

. . .
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3.4. Right-to-left maxima and ballot numbers. We say that an increasing
subsequence π(i1)π(i2) · · ·π(ik) of π ∈ Sn is right maximal if π(ik) < π(j) implies
j < ik (so that the sequence can not be extended to the right).

Proposition 5. Let π ∈ Sn(132) and let mk(π) be the number of right maximal
increasing subsequences of π of length k + 1. Then

mk(π) = ek(π) − ek+1(π) + ek+2(π) − · · · .

In particular, the number of right-to-left maxima in π equals

e0(π) − e1(π) + e2(π) − e3(π) + · · · .

Proof. It suffices to prove that for all π ∈ S(132) and k ≥ 0 we have mk(π) +
mk+1(π) = ek(π). The statistic ek counts all increasing sequences of length k+1 in
π. If such a sequence is right maximal, it is counted by mk+1. It therefore suffices
to show that every increasing subsequence of length k that is not right maximal can
be associated to a unique right maximal subsequence of length k+1, and conversely.

If an increasing subsequence of length k is not right maximal, it can be extended
to a right maximal one of length k + 1 and we show that this can only be done in
one way. Suppose x is the last letter of the original sequence and that the sequence
can be extended to a right maximal one by adjoining either y or z, where y comes
before z in π. Then y must be greater than z, so x, y, z form a 132-sequence which
is contrary to the assumption that π is 132-avoiding.

Conversely, deleting the last letter in a right maximal sequence of length k + 1
clearly gives a non-right maximal sequence of length k. �

Define
Mk(x, t) =

∑
π∈S(132)

xmk(π)t|π|.

To apply Corollary 3 we note that

mk(en) − mk(en−1) =
(

n

k

)
−
(

n

k + 1

)
+
(

n

k + 2

)
− · · · =

(
n − 1
k − 1

)
,

so the (n + 1)st numerator in the Catalan continued fraction expansion of Mk(x, t)
is tx(n−1

k−1). Define
Ek(x, t) =

∑
π∈S(132)

xek(π)t|π|.

Since
(
n−1
−1

)
is naturally defined to be δn0, Theorem 2 yields, for all k ≥ −1, that

Ek(x, t) is the continued fraction with (n + 1)st numerator tx(n
k). This leads to the

following observation.

Proposition 6. For all k ≥ 0 we have

Mk(x, t) =
1

1 − tEk−1(x, t)
.

The ballot number b(n, k) is the number of paths from (0, 0) to (n + k, n − k)
that do not go below the x-axis. It is well known that the ballot number b(n, k) is
equal to n+1−k

n+1

(
n+k

n

)
. Define B(x, t) =

∑
n,k b(n, k)xktn. Then (see [11, p 152])

B(x, t) =
C(xt)

1 − tC(xt)
,

where C(x) is the generating function for the Catalan numbers.
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Proposition 7. The number of permutations in Sn(132) with k right-to-left max-
ima equals the ballot number

b(n − 1, n − k) =
k

2n − k

(
2n− k

n

)
,

and

b(n − 1, k) =
n − k

n + k

(
n + k

k

)
counts the number of permutations of length n with k right maximal increasing
subsequences of length two.

Proof. By Proposition 6,

M0(x, t) =
1

1 − xtC(t)
records the distribution of right-to-left maxima. Since

B(x−1, xt) =
C(t)

1 − xtC(t)
we have

M0(x, t) = 1 + xtB(x−1, xt) = 1 +
∑
n,k

b(n − 1, n− k)xktn,

and the first assertion follows. For the second assertion, observe that by Proposi-
tion 6,

M1(x, t) =
1

1 − tC(xt)
.

Furthermore,
M1(x, t) = M0(x−1, xt) = 1 + tB(x, t),

which concludes the proof. �
The first assertion of Proposition 7 can be proved bijectively using the map Φ in

Section 2. In fact, the number of right-to-left maxima of π is equal to the number
of returns in Φ(π), that is, the number of times the path Φ(π) intersects the x-axis.
This number is known to have a distribution given by b(n − 1, n− k) (see [1]).

3.5. Narayana numbers. The generating function N(x, t) =
∑

n,k N(n, k)xktn

for the Narayana numbers N(n, k) = 1
n

(
n
k

)(
n

k+1

)
satisfies the functional equation

(see for example [13])

N(x, t) = 1 + xtN2(x, t) − xtN(x, t) + tN(x, t).

Equivalently,

N(x, t) =
1

1 − t

1 − xtN(x, t)

.

This allows us to express N(x, t) as a continued fraction:

N(x, t) =
1

1 − t

1 − tx

1 − t

1 − tx

. . .

.
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Proposition 8. The statistic s = e1−2e2+4e3−· · · has the Narayana distribution
over S(132), that is, ∑

π∈S(132)

xs(π)t|π| =
∑
n,k

N(n, k)xktn.

Proof. This follows immediately from Theorem 2 and the identity∑
k odd

(−1)n−k

(
n

k

)
= (−2)n−1, for n > 0.

�
Now∑

k≥1

(−2)k−1fk(w) =
∑
k≥1

∑
d in w

(−2)k−1

(
h(d) − 1

k

)
=
∑

d in w

1 + (−1)h(d)

2

so the interpretation of e1 − 2e2 + 4e3 − · · · in terms of Dyck paths is the number
of down-steps starting at even height, whose distribution is known [7] to be given
by the Narayana numbers.
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