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Statistics on staircase tableaux, eulerian and
mahonian statistics

Sylvie Corteel and Sandrine Dasse-Hartaut

LIAFA, CNRS et Université Paris-Diderot, Paris, France

Abstract. We give a simple bijection between some staircase tableadixables of inversion. Some nice properties
of the bijection allows us to define someEulerian polynomials related to the staircase tableaue al§o give a
combinatorial interpretation of thegeEulerian polynomials in terms of permutations.

Résurre. Nous proposons une bijection simple entre certains taklescalier et les tables d’'inversion. Cette bijection
nous permet de montrer que les statistiques Euleriennealedilennes sont naturelles sur les tableaux escalier. Nous
définissons des polyndmesEulériens et en donnons une interprétation combinatoir

Keywords: staircase tableaux, bijection, permutations

1 Introduction

Staircase tableaux are new combinatorial objects define8. Iyorteel and L. Williams (10). They are
related to the asymmetric exclusion process on a one-diowgdattice with open boundaries (ASEP)
and were also used to give a combinatorial formula for the et of the Askey-Wilson polynomials
defined in (1; 11). Those results are presented in (10; 7).stdicase tableaux are generalizations of the
permutation tableaux (6; 16) coming from work and alterreatableaux (13; 17).

Definition 1 (10) A staircase tableau of sizeis a Young diagram of shape,n — 1, ...,1) such that
boxes are empty or filled with,3,v,6 and that

¢ the boxes along the diagonal are not empty
e aboxin the same row and on the left ofa@r a § is empty

e abox in the same column and above ar a -y is empty

Definition 2 (10) Theweightwt(7") of a staircase tablead is a monomial iy, 3, v, 4, ¢, andu, which
we obtain as follows. Every blank boxbfis assigned & or u, based on the label of the closest labeled
box to its right in the same row and the label of the closestlah box below it in the same column, such
that:
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Fig. 1: A staircase tableau of size 7 and its weight

every blank box which seesfao its right gets assigned &

e every blank box which seesido its right gets assigned @

every blank box which sees aror « to its right, and anx or § below it, gets assigned&

every blank box which sees aror v to its right, and as or v below it, gets assigneda

After assigning a or u to each blank box in this way, thveeightof 7 is then defined as the product of
all labels in all boxes.

The tableau on Figure 1 has weight32~v363¢%u8.
Remark. The weight of a staircase tableau always has degfee+ 1)/2. For convenience, we will
sometimes seai = 1, since this results in no loss of information.

Definition 3 The generating polynomial of staircase tableaux of siie

Zn(a, B,7,0,qu) = > wt(T).

T Of sizen
Wheng = u = 1, this generating polynomial is simple (10) :

n—1

Zn(a,8,7,0,1,1) = [[ (a4 B+7+6 +i(a+7)(B+0)). 1)
=0

In (7), the authors give an explicit formula f&, («, 8, v, d, ¢, 1). Itis very complicated and is derived
from a formula of the moments of the Askey-Wilson polynomidh this paper, we show that there are
other special cases df, that have a very nice form. In particular, we show that

Theorem 1

n—1

Zn(0,8,7,0,q,u) = [ (Bu' + By(u''q+ ... +ug" ") + 7).
1=0

Notice that as the definition of the tableaux implies atw, 3,v,4,1,1) = Z,(0, 8+, a++,0,1,1),
our result is a refinement of (1).

We will prove the results in two ways: a bijection and an inikecargument. We will see that both of
these arguments are quite simple. This gives the simplgshent that there exidt'n! staircase tableaux



Statistics on staircase tableaux 247

of sizen (10; 7). We will study(3/~)-tableaux that are staircase tableaux which do not contsjmvar
4. We show that our very simple bijection can be generalizeahtofamily of staircase tableaux.

We continue the study of thg3/~)-tableaux. When those tableaux have exagtlgntries equal to
v, there exist exactly:! such tableaux. In (7), it is shown that they are in bijectiathvpermutation
tableaux (16) or alternative tableaux (13; 17). We will shinat the bijection allows us in this case
to understand the statistic "number @§ on the diagonal” which is known to be related to the eulerian
numbers (16; 18). Thanks to this we will introduce some peiulerian polynomials and will give some
combinatorial interpretation in terms of permutations.

We start in this paper by studying, («, 3,, 4,1, 1) and some simple consequences and symmetries
on staircase tableaux. We then study {i¢~)-staircase tableaux and define fh&ulerian polynomials.
We show how the same type of arguments can be extended fordygiaircase tableaux. We end this
extended abstract with some concluding remarks and opédrgmns.

2 Warm up on staircase tableaux

We first recall some simple recurrence to compitéa, 3, v, d, 1, 1) givenin (7). Thanks to the definition
of staircase tableaux, it is direct to see that

Zn(a7677757]"1):Zn(a+ry,/8+570’071’1)

We then just need to count tableaux with andgs as done for permutation tableaux in (6). As in (10),
we say that a line is indexed hy if the leftmost entry of the line isv. Let Z,, 1(a, §) be the number
of tableaux counted b¥,,(«, 5,0, 0, 1, 1) with k& rows indexed byx. Then if we add a new column to a
staircase tableau, we see that :

Zn,k(a7 B) = Z aﬁé_lﬁ_l (k ¢ 1) Zn—l,[(aa ﬁ) + Z ﬁé_k-i_l (fﬁ) Zn—l,[(av B)
1>k—1 o >k

for n > 0 andi < n. The initial conditions aréZy o = 1 andZ,, , = 0if k <0orn < 0ork > n. This
implies thatZ, («, 3, z) = Y, Zn.k(a, B)z* follows the recurrence for > 0

Zn(a, B,x) = (ax + ) Zn1 (o, B, + )

and with the initial conditiory(«, 3, z) = 1. The solution isZ,, (o, 3, ) = Hﬁgol(az + B +iaf) and
thereforeZ,, (a, 3,0,0,1,1) = [[' (a + 5 + iaf3).
This implies the following known results (7) :

1. The number of staircase tableaux of siz&ith as andgs is(n + 1)!.
2. The number of staircase tableaux of sizis 4" n!
3. The number of staircase tableaux of sizeith as andgds andys is(2n + 1)!!.

We get some other simple results.

Lemmal 1. The number of staircase tableaux of sizwith a maximum number a@f, 3, v or ¢ is
4"(n — 1)L
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2. The number of staircase tableaux of siz&ith a minimum number af, 3, v or ¢ is 4™.
From the definition of the weight of the tableaux, we also get:

Lemma2 1. The number of tableaux of sizewith as andg8s and a minimum (resp. maximum)
number ofus is3 x 4"z (resp.n).

2. The number of tableaux of sizea minimum number afs is (Z)

We can also define three involutions on tableaux. The praafttiey are involutions follows directly
from the definition of the tableaux.

Involution 1. Let ¢ be the involution on the staircase tableaux that takes adalil, exchangess and

s, and exchangess andds, and conjugates the tableau. We can check that the tabitained is a
staircase tableau, and that the numbex @i 7" is the number of in ¢(7") and so on. This implies that:

Z’n(av 67 7757 ]" 1) = Zn(ﬂ? a? 5777 ]" 1)'

An example is given on Figure 2.

5 of 17] s
o vy o vy «
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Fig. 2: Example of the involution 1

Involution 2. We can also use the involutiainthat exchangeas with §s, andgs with s and conjugates
the obtained tableau. This gives :

Zn(a, B8,7,6,1,1) = Z,,(8,7, B8, , 1, 1).
Involution 3. Finally if we exchangers andys andgs andds, we get
Zn(, 8,7,0,q,u) = Zn(7, 0,0, B, u, q).
Open problem Find a combinatorial proof of the fact that :

Zn(o, B,7,0,q,u) = Zn(B,a,0,7,q,u).

By a combinatorial proof, we mean a natural involution onttideaux.
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3 A bijection from tableaux to inversion table

3.1 Tableaux with n entries equal to v and s

We first recall that(3/~)-tableaux are staircase tableaux witham®r 5. We start by enumerating the
(8/~)-tableaux of sizen that contain exactly: entries equal toy. Let Z,(3,+, ¢) be their generating
polynomial. We will show that :

Proposition 1 Z,,(8,7,q) = v* 11— (B +q+ ... + ¢ ") + ¢).

We define a bijection from those tableaux of sizé permutations of,, via tables of inversiod” =
[T[1],...,Tn]]with T[i] <iforl <i<n.

A bijection from tableaux to permutations. There is oney in each column, so we can nhumber them:
the leftmosty will be designed byy;, the following by~,; and so on, untily,,. Then, for each;, we count
the numbet; of cells that do not contain a Greek letter to the immediafiede~;. We can construct a
table of inversiorf” with T'[i] = ¢,.

1234567
¥ T 17
v ¥
g

gl

Fig. 3: A (3/~)-staircase tableau

For example from the tableau on Figure 3, we obtain the tébte (0,1,2,1,2,2,1). Then we can
use any bijection from inversion table to permutations ahthim a permutation. For examplef[i]
corresponds to the number of elemepts< i such thatr=!(i) < o~!(j), we obtain the permutation
(3,2,5,6,4,7,1).

Inverse of the bijection. We have an inversion tablE of sizen, we construct a staircase tableau of
sizen using the following algorithm :

e Puty in the last column and first row, and méfKn| cells to its left (withg).

e Fori=n—-1to1l

Look at the topmost cell in th&h column which is not occupied and putan it.
Mark theT'[:] cells to its left (withg)

Fill all the empty cells under it with

Mark all the cells to the left of thgs (withw)

We have exactly ong in each column. Each has no Greek letter to its left and eaglhas no Greek
letter above itself. We have a staircase tableau, and itiab that the table of inversion obtained from



250 Sylvie Corteel and Sandrine Dasse-Hartaut

this staircase tableau is exacily Therefore we defined a bijection. Moreover all the cellgdily to the
left of ay get a weight;. Therefore

Proposition 2 The number of3/~)-staircase tableaux of sizewith n entries equal toy, a entries equal
to ¢, b rows indexed byy is equal to the number of permutations{df, . .., n} with a inversions and
left-to-right minima.

Using well known results on enumeration of permutationg fee example (15) Chapter 1), we get a
proof of Proposition 1.

3.2 Generalization of the bijection

Now we can generalize the previous bijection to staircalskegaux. Start with a staircase tableau of size
n and number the columns frointo »n from left to right. Then for each columiwe look at the topmost
Greek letter in columm and count the number of celjdirectly to its left that does not contain any Greek
letter. If this letter, say X, is topmost and leftmost, weaetI[i] = j,.. Otherwise lely be the first Greek
letter to the left ofr and letz be the first Greek letter undgr ThenT'[i] = j,. ..

For example, using the tableau of Figure 1, we obfaia (04,13, 24, 1o, 20,55 24,51 14,5)-

For the general case, this is a bijection from staircase#ab{ of sizen and colored tables of inversion
T such thafl'[i] = (i — 1), withz € {a, 5,7,0} or T'[i] = jy,, With0 < j <i—1andz € {«,v} and
y € {B,d}.

This implies equation (1), that is:

n—1

Zn(,8,7,6,1,1) = [[(a+ B+7+ 0 +i(a+7)(B+7)).
1=0

For the(3/~)-tableaux, this is a bijection froit3/~)-staircase tableaux of sizeand colored tables of
inversionT such thafl'[i] = (i — 1), with z € {3,~v} or T'[i] = j,, 3 With 0 < j < i — 1. The number of
q of the tableau is equal to the sum of th§] (except the ones that are equat 9. This implies that

n—1

Zn(0,8,7,0,4,1) = [T (B+Bvg+ ... + ¢ ") +4).
=0

This is Theorem 1.

Remark. As in the previous section, we could have proven this by metwe. LetZ, .(8,~, ¢) be the
number of tableaux counted 1, (0, 5,~, 0, ¢, 1) with k rows indexed byy. We look at how many ways
we can add a column to a tableau of size 1. We get:

_ _ 4 L L
Zni(Bv,q) = Y BT 1<k_1)Zn1,2(5,%Q)+Zﬂe "+1q’“<k)Zn1,e(ﬂ,v,q)-
1>k—1 >k

forn > 0 andk < n. The initial condition areZy o = 1 andZ,, , = 0if k <0orn < 0ork > n. Let
Zn(B:7: ¢, %) = .1, Znk(B, 7, ¢)x". The recurrence implies thak (3, v, ¢, z) = 1 and forn > 0

Zn(B,7,q,%) = (V& + 8) Zn-1(8,7,q, xq + )
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The solution is

n—1

Zn(B,7,0,7) = [[(B+Bv(g+ ...+ ¢ ") +y2q").
1=0

ThereforeZ,, (0, 3,7,0,¢,1) = [17=5 (B + By(q + ... + ¢ 1) +74P).

4 g-Eulerian polynomials

4.1 Entries equal to g on the diagonal

Again we number the columns of the tableau from left to rightthis section we use some properties of
the bijection defined in Section 3.1. We need the followimyge lemma.

Lemma 3 Given a(3/~)-tableau of sizen with n entries equal toy, there is ag on the diagonal in
column; if and only if there is at least ong in columnj > i that hasj — i — 1 entries equal tg; to its
immediate left.

Proof: Direct from the definition of the tableau and the fact thasthtableaux have exactly onén each
column. O

We use the bijection of Section 3.1. We now transform theetatblinversionT = [T'[1],...,T[n]]
obtained from thd 5/~)-tableau into the tabl — T[1],1 — T'[2],...,n — 1 — T'[n]]. We still obtain a
table of inversion. Moreover the distinct positive valuéste table of inversion now correspond to the
diagonal entries filled wittis. We skip the proof of this claim. Therefore

Proposition 3 There exists a bijection between

e (/~)-tableaux of sizex with n entries equal tey, entries equal t@ in diagonals{y, . .., i} and
a entries equal tg

e table of inversiorl” = [T'[1],...,T[n]] such that
— for1 < j <k, there exists at least orfesuch thatl'[¢] = i;
- Y Tl =(3) —a.

For fixedn andk, let Z,, x(8, v, ¢) be the generating polynomial ¢8/~)-tableaux of sizex with n
entries equal tey andk entries equal t@ on the diagonal.

Lemma 4 The numbeZ, (1, 1,1) is equal to the Eulerian numbers, ;...
Proof: This is direct as these staircase tableaux of sizre in bijection with permutation tableaux of
lengthn. This bijection is such that the entries equajston the diagonal are in one-to-one correspon-

dence with the columns of the permutation tableau. See (kQhé bijection from staircase tableaux to
permutation tableaux. See (6; 16) for the bijection frormpetation tableaux to permutations. O

We now interpretZ,, »(3,~, ¢) in terms of permutations.
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4.2 Permutations with k£ descents

We have seen that staircase tableaux wiémtries equal t@ on the diagonal are in bijection with tables of
inversion withk different positive values. We construct here a bijectiotwlaen these tables of inversion
and permutations witk descents.

4.2.1 From permutations with k£ descents to the tables of inversion with (k£ + 1)
distinct values (including 0)

Let o be a permutation wittk descents. We construct a table of inversiofrom o. Fori from 1 ton, let
j be the first element to the right o6atisfyingj < 7. If such aj does not exist, séf[i] = 0 andT[i] = j
otherwise.

It is easy to check that for all T'[i] < i. Moreover all the values of the table are either O or the \&lue
of the end of the descents of Finally, for all descent i of indexi, o;; is in at least one index iff'.
Then the table hak + 1 distinct values.

For example, let = (5,8,2,1,6,7,3,4,9). We obtainl” = [0, 1,0,0, 2, 3, 3,2,0]. The permutation
has three descents that end.i2 and3, and the table has four distinct valugd, 2 and3.

4.2.2 From tables of inversion to permutations

We start a tabld" of inversions withk + 1 distincts values. We create by inserting successively the
lettersi = 1,2,...,n. If T[i] > 0 then we insert directly beforeT’[i] and add; at the end otherwise.
For example, if we have the table= [0, 0, 1, 0, 4, 1, 0], we get the permutatiomn = (3,6, 1,2,5,4,7)
which has two descents. This is clearly the reverse map girin@ous subsection.
We now can interpreg,, (3, ~, ¢) in terms of permutations. Given a permutatioof S,,, we suppose
thato(n + 1) = 0. Let M (o,4) bej if jis the first element to the right efsuch thay < . Let

M@i) = min{j|j<iando '(j) > o (i)}
M(o) = ZM(J,Z’).

Let RLmin(o) be the number of right-to-left minima of. For example, it = (3,6,1,2,5,4,7) then
M(0,3) = M(0,6) =1, M(0) = 6 andRLmin(c) = 4. Let S,, ;, be the set of permutations &), with
k descents. Thanks to the previous bijection, we get that

Proposition 4
Zn,k(ﬁ, v, q) = ,ynﬁnq(z) Z qflbf(o)ﬁfRme(o).

O'ESn,k

But also we get a refinement. Lét= {i1,...ix}, let Z, 1(8,~, ¢) be the generating polynomial of
the (8/~)-tableaux of sizen with n entries equal toy and where entries equal 1® on the diagonals
are indexed by. Let S, (I) be the set of permutations &f, such thatz(j — 1) > o(j) if and only if
o(j) € I. Then

Proposition 5

Zn,I(ﬁ;%q)Zq(Z)ﬁ"fy" Z q_M(U)ﬁ—RLmin(o—).
oceS,(I)

Remark. The cas¢? = ¢ = 1 was already known for permutation tableaux (6; 18).
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5 Type B tableaux

In this section, we study some typestaircase tableaux. They are the analogue of the Bypermutation
and alternative tableaux (12; 4; 5).

Definition 4 A typeB staircase tableau of sizeis a staircase tableau of siZ that is invariant under
the involution 2 from Section 2.

As the tableau is symmetric, we only keep half of it. A tyBestaircase tableau of sizeis therefore of
shapg(1,2,...,n,n,n —1,...1). We number the rows from top to bottom and the columns frotridef
right. We denote bgign-diagonathe cells(, i), for 1 < i < n. Asin Section 1, we define the generating

polynomialZ{?) (a, 8,7, 8, ¢, u). We only look at the case = ¢ = 1.
We first investigate tableaux with onfis andys. We can construct a bijection from those tableaux the
signed permutations, using the idea of the bijection betvgt&ircase tableaux and permutations:

e When columni does not contain &, we add ay in cell (i, 7).
e We number theys from left to right.
e We create two tables, the table of inversiBrand the table of sig#

e For eachi, T'[¢] is the number of cells with no Greek letter immediately to k¢ of ~; (in the
columns). The sign ofi is & if ; is in the sign-diagonal ang otherwise.

For example, starting from the tableau on Figure 4, we olitersigned permutation given by the tables
T =10,0,2,1,2]andd = [©,®, ®, S, O).

gl
& 5 ki &
6 g gl
g g
E s
gl gl
6 g
El [l

Fig. 4: A type B staircase tableau and the tableau wherare inserted on the sign-diagonal

Therefore

Proposition 6 The previous algorithm defines a bijection between t§pstaircase tableaux of size
with s andj3s and signed permutations §f, ..., n}. This bijection implies that

n—1

Z9(0,8,7,0,1,1) = (v + B)" [[ (1 + 84).

=0
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Proof: We obviously have a function that transforms a tableau indgaed permutation. To see that it
is a bijection, we just have to notice that there is two cheioe,,, and that knowing(n) allows us to
know in which of these two cells is theof columnn. Then for eachi, if we know where are all the;
for j > 4, we have two choicesy; may be on the left of ; or on the diagonal or on the sign diagonal.
The latter case correspondsétfi] = ©. The others are identical to the construction betweencsteér
tableaux and permutations. There is no other choice sinceafthy on the column that is not on the
sign-diagonal the row has to be empty (recall that the whole tableau is invariadeuthe involution 2
from Section 2). O

Again, it is easy to see that:
Z’r(LB)(aaﬁa’ya(s) = Z,,(IB)(O,B—i—é”y—f—a’O) (2)

And we obtain the following corollary
Corollary 1 There existi”(2n — 1)!! staircase tableaux of typB and sizen.

6 Conclusion

In this paper, we give a very simple bijection betwé@~)-staircase tableaux and permutations. This
bijection is such that the number @in the tableaux is related to the number of inversions of &enu-
tation. Thanks to this construction, we get some possibly g&ulerian polynomials. This work opens
a set of natural open questions.

1. Is there a natural partially ordered set(@h'~)-staircase tableaux that is isomorphic to the (weak)
Bruhat order?

2. Can we compute thegeEulerian polynomials as done in (18) for the permutatidiigaux?

3. Can we compute the generating polynomial®f~)-staircase tableaux when the diagonal is fixed
as done in (18; 14) for the permutation tableaux?

Our goal in this study of the staircase tableaux is to undatstheg-statistics in the general staircase
tableaux. We know that this is related to crossings or 31tepes in permutations for the case with only
as andgs (3; 6; 16), to inversions in permutation for the case witlyas and~s and to f-crossings
in matchings (7) for the case with onlys, §s andvys. Similar results hold also for the type B analogue
(12; 5; 4). The general case is still open for now.
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