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Shortest path poset of Bruhat intervals

Saúl A. Blanco†

Department of Mathematics, Cornell University, Ithaca, NY, USA

Abstract. Let [u, v] be a Bruhat interval and B(u, v) be its corresponding Bruhat graph. The combinatorial and topo-
logical structure of the longest u-v paths of B(u, v) has been extensively studied and is well-known. Nevertheless,
not much is known of the remaining paths. Here we describe combinatorial properties of the shortest u-v paths of
B(u, v). We also derive the non-negativity of some coefficients of the complete cd-index of [u, v].

Résumé. Soit [u, v] un intervalle de Bruhat et B(u, v) le graphe de Bruhat associé. La structure combinatoire et
topologique des plus longs chemins de u à v dans B(u, v) est bien comprise, mais on sait peu de chose des autres
chemins. Nous décrivons ici les propriétés combinatoires des plus courts de chemins de u à v. Nous prouvons aussi
que certains coefficients du cd-indice complet de [u, v] sont positifs.
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1 Introduction
While the paths of the Bruhat graph B(u, v) of the Bruhat interval [u, v] only depend on the isomorphism
type of [u, v] (see (Dye91)), all of the u-v paths of B(u, v) are needed to compute the R̃-polynomial, as
well as the complete cd-index of [u, v]. Unfortunately, the structure of B(u, v) is not easy to understand.
Thus we focus on the shortest paths of B(u, v), since their combinatorial structure is more manageable.
In particular, they form a Hasse diagram of a poset, which we denote by SP (u, v).

The order of the paper is as follows: In Section 2 we summarize the basic properties of SP (u, v), and
describe their structure two specific cases: (i) if W is finite, with u = e and v = wW0 (longest-length
element of W ) and (ii) if the number of rising chains (under a reflection order) is one. In Section 2.3 we
provide an algorithm that allows us to separate the chains in SP (u, v) into subposets, each of which has
properties resembling properties of [u, v]. In Section 3 we derive consequences of the work done to the
complete cd-index.

1.1 Basic definitions
Let (W,S) be a Coxeter system, and let T def= T (W ) = {wsw−1 : s ∈ S,w ∈W} be the set of reflections
of (W,S). The Bruhat graph of (W,S), denoted by B(W,S) or simply B(W ), is the directed graph with
vertex set W , and a directed edge w1 → w2 between w1, w2 ∈ W if `(w1) < `(w2) and there exists
t ∈ T with tw1 = w2. Here ` denotes the length function of (W,S). The edges of B(W ) are labeled
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by reflections; for instance the edge w1 → w2 is labeled with t. The Bruhat graph of an interval [u, v],
denoted by B(u, v), is the subgraph of B(W ) obtained by only considering the elements of [u, v]. A path
in the Bruhat graph B(u, v), will always mean a directed path from u to v. As it is the custom, we will
label these paths by listing the edges that are used. Furthermore, we denote the set of paths of length k in
B(u, v) by Bk(u, v).

A reflection order <T is a total order of T so that r <T rtr <T rtrtr <T . . . <T trt <T t or
t <T trt <T trtrt <T . . . <T rtr <T r for each Coxeter system (〈r, t〉, {r, t}) where r, t ∈ T . Let
∆ = (t1, t2, . . . , tk) be a path in B(u, v), and define the descent set of ∆ by D(∆) = {j : tj+1 <T
tj} ⊂ [k − 1]. If D(∆) = ∅, we say that ∆ is rising.

Let w(∆) = x1x2 · · ·xk−1, where xi = a if ti < ti+1, and xi = b, otherwise. In other words, set xi
to a if i 6∈ D(∆) and to b if i ∈ D(∆). Billera and Brenti (BB) showed that

∑
∆∈B(u,v) w(∆) becomes

a polynomial in the variables c and d, where c = a + b and d = ab + ba. This polynomial is called the
complete cd-index of [u, v], and it is denoted by ψ̃u,v(c,d). Notice that the complete cd-index of [u, v]
is an encoding of the distribution of the descent sets of each path ∆ in the Bruhat graph of [u, v], and thus
seems to depend on <T . However, it can be shown that this is not the case. For details on the complete
cd-index, see (BB).

As an example, consider S3 with generators s1 = (1 2) and s2 = (2 3). Then t1 = s1 <T t2 =
s1s2s1 <T t3 = s2 is a reflection ordering. The paths of length 3 are: (t1, t2, t3), (t1, t3, t1), (t3, t1, t3),
and (t3, t2, t1), that encode to a2 + ab + ba + b2 = c2. There is one path of length 1, namely t2, which
encodes simply to 1. So ψ̃u,v(c,d) = c2 + 1.

Given a monomial m ∈ Z〈c,d〉, we denote the coefficient of m in ψ̃u,v(c,d) by [m]u,v . Notice that
[cn]u,v is the number of rising paths in Bn+1(u, v).

2 Shortest path poset
We begin with some basic properties of SP (u, v).

Proposition 2.1 Let [u, v] be a Bruhat interval, then the undirected edges of the shortest paths of B(u, v)
form the Hasse diagram of a poset.

We point out that in general the edges of paths in Bk(u, v) need not form a Hasse diagram of a poset.
Indeed, it is possible to have elements u ≤ x0 < x1 < x2 < x3 ≤ v so that x0 → x1 → x2 → x3 and
x0 → x3 are all in B(u, v).

We call the poset of Proposition 2.1 , the shortest path poset of [u, v], and we denote it by SP (u, v).
Furthermore, the edges of the Hasse diagram of SP (u, v) inherit the labels of the corresponding edges in
B(u, v). In particular, we say that a maximal chain C in SP (u, v) is rising if the path corresponding to
C in B(u, v) is rising.

Proposition 2.2 SP (u, v) is a graded poset, and for x ∈ SP (u, v), the rank of x is the length of the
shortest u-x path in B(u, x).

To illustrate the definition consider B2 and SP (e, 1 2) as depicted in Figure 1. Notice that the rank of
SP (e, 1 2) is 2, the length of the shortest paths in B(B2).
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Fig. 1: B(B2) and SP (B2).

2.1 Finite Coxeter groups
For any finite Coxeter group W , there is a word wW0 of maximal length. It is a well-known fact that
`(wW0 ) = |T |. For any w ∈ W , one can write t1t2 · · · tn = w for some t1, t2, . . . , tn ∈ T . If n is
minimal, then we say that w is T -reduced, and that the absolute length of w is n. We write `T (w) = n.

Notice that for w ∈ W , if `T (w) = m, then t1t2 · · · tm = w for some reflections in T , but this does
not mean that (t1, t2, . . . , tm) is a (directed) path in B(e, w). Nevertheless, for finite W and w = wW0 ,
(t1, t2, . . . , tm) and any of its permutations (tτ(1), tτ(2), . . . , tτ(m)), τ ∈ Am−1, are paths in B(W ) (see
Theorem 2.3 below).

Let SP (W ) denote the poset SP (e, wW0 ). The combinatorial structure of SP (W ) was described
in (Bla09). For the sake of completeness, we include the main results therein.

Theorem 2.3 Let W be a finite Coxeter group and `0 = `T (wW0 ), the absolute length of the longest
element of W . Then SP (W ) is isomorphic to the union of Boolean posets of rank `0. Each copy of B(`0)
share at least e and wW0

We summarize the number of Boolean posets that form SP (W ) and the rank of SP (W ) for each finite
Coxeter group in Table 1.

where

bn = 1 +
bn

2 c∑
j=1

1
j!
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i=0

(
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2

)
.

and

dm =
1
bm2 c!

bm
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i=0

(
m− 2i

2

)
where m = n if n is even, and m = n− 1 if n is odd.

We point out that the union of the Boolean posets could share more elements than e and wW0 . For
instance, consider SP (B3) below.
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Tab. 1: Finite coxeter groups W , rank(SP (W )), and the number of Boolean posets in SP (W )

W rank(SP (W )) αW = # of Boolean posets in SP (W )
An−1 bn−1

2 c 1
Bn n bn
Dn n if n is even; n− 1 if n is odd dn
I2(m) 2 if m is even; 1 if m is odd m

2 if m is even; 1 if m is odd
F4 4 24
H3 3 5
H4 4 75
E6 4 3
E7 7 135
E8 8 2025

While some elements other than e and wB3
0 are shared by more than one Boolean poset, each maximal

chain belongs to a unique Boolean poset.

2.2 One rising chain

Since [u, v] is EL-shellable (see (BW82) and (Dye93)), then [u, v] has a unique maximal chain that is
rising. So it is reasonable to study the structure of SP (u, v) under the assumption that there is a unique
rising chain. Even though this seems to be a strong assumption, there are several examples of Bruhat
intervals where SP (u, v) has a unique rising chain; for instance, [21435, 53241].

An important tool in our study are the R̃-polynomials, defined below.

Definition 2.4 (R̃-polynomials) Let s ∈ S so that `(vs) < `(v). Then define R̃u,v(α) by

R̃u,v(α) =

{
R̃us,vs(α) if `(us) < `(u),
R̃us,vs(α) + αR̃u,vs(α) if `(us) > `(vs).

Dyer (Dye01) provided an interpretation of R̃u,v(α) in terms of the number of rising paths of B(u, v).
Namely,

R̃u,v(α) =
∑

∆∈B(u,v)
D(∆)=∅

α`(∆).

With this interpretation in mind, we have

Proposition 2.5 R̃u,y(α)R̃y,v(α) ≤ R̃u,v(α).

We point out, in passing, that the above proposition generalizes Theorem 5.4, Corollary 5.5 and Theo-
rem 5.6 in (Bre97) .

Proposition 2.5 yields the following theorem.
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Fig. 2: SP (B3) has 4 copies of B(3). Notice these copies intersect, but each maximal chain is in a unique Boolean
poset.

Theorem 2.6 If SP (u, v) has a unique rising chain, then
(a) SP (u, v) is EL-shellable.
(b) SP (u, v) is thin, i.e., every subinterval of length two of SP (u, v) has four elements.

These topological properties will have consequences on the complete cd-index, and it will be discussed
in Section 3.

2.3 FLIP algorithm

Let k + 1 def= rank(SP (u, v)). An important distinction between [u, v] and SP (u, v) is that [u, v] has a
unique maximal, rising chain whereas SP (u, v) could have more than one. So we propose an algorithm
that splits the chains of SP (u, v) into [ck]u,v posets Pi, i = 1, . . . , [ck]u,v . The structure of each Pi is
easier to understand than SP (u, v). So far we have been shown that the Pi have properties that resemble
those of [u, v].

We now follow (BB) to define the flip of Γ ∈ B2(u, v). Let (t1, t2) and (r1, r2) be in B2(u, v). We
say that (t1, t2) ≤lex (r1, r2) if t1 <T r1 or if t1 = r1 and t2 <T r2, or t2 = r2. The existence of the
complete cd-index implies that there are as many paths with empty descent set in B2(u, v) as those with
descent set {1}. Order all the paths in B2(u, v) lexicographically and let

r(Γ) = |{∆ ∈ B2(u, v) : D(∆) = D(Γ),∆ ≤lex Γ}|.

Definition 2.7 With everything as above, we define the flip of Γ is the r(Γ)-th Bruhat path in {∆ ∈
B2(u, v) | D(∆) 6= D(Γ)} ordered by ≤lex. We denote this path by flip(Γ).

Given ∆ = (t1, t2, . . . , ti, ti+1, . . . , tk) ∈ Bk(u, v), we denote the path (t1, t2, . . . , t′i, t
′
i+1, . . . , tk),

where flip(ti, ti+1) = (t′i, t
′
i+1), by FLIPi(∆). We are now ready to describe our algorithm.

The pseudocode of FLIP is given in Algorithm 1. In a few words, FLIP returns a (directed) graph G
whose vertices are the maximal chains of SP (u, v) and (C,C ′) is an edge if FLIPj(C) = C ′, where
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Algorithm 1 FLIP(SP (u, v))
G := (V,E), with V is the set of chains of B(SP (u, v)) and E := ∅.
T := V
for C a maximal chain of SP (u, v) do

if D(C) 6= ∅ then
i := minD(C)
C ′ := FLIPi(C)
Add edge (C,C ′) to E.

end if
end for
return G

j = min{D(C)}. Notice that G has [ck]u,v connected components, say G1, G2, . . . , G[ck]u,v
. We define

Pi to be the poset SP (u, v) with all the chains (represented by vertices) not in Gi removed.
Let us illustrate FLIP with the following example. Notice that the chains in SP (u, v) are represented

by the labels assigned to the corresponding edges in the B(u, v).

Example 1 Consider the 10 elements of B3(1234, 4312). Then the output of FLIP is depicted below. In
the first column we have the two components of G, and in the right column the posets Pi corresponding
to each component.

Output

134 ← 143 ← 423 ← 462 ← 652
↑

514

235 ← 251 ← 521
↑

625
2

6

2

5

2

3

5

1

4

3

1

4

3

2

4

6

2

6

5

5

1

5

Saúl A. Blanco (Here) The shortest path poset Bruhat intervals DGC Seminar 34 / 41Fig. 3: On the left, we find the output of FLIP: two connected components. On the right the corresponding posets are
depicted.
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Each Pi satisfies properties resembling those of Bruhat intervals. Concretely, we have

Proposition 2.8 (a) Pi is graded.
(b) Every subinterval of Pi has at most one rising chain.
(c) Every subinterval of length two of Pi has at most two coatoms.

Bruhat intervals satisfy the properties above once we replace “at most” with “exactly”.

2.4 FLIP applied to An, Bn and Dn

When applied to An−1, the output of FLIP is a unique graph G and the corresponding poset P is simply
SP (An−1). Furthermore, one can choose a reflection order for the reflections of Bn (see (Bla11)) so that
FLIP outputs bn copies of B(n) (see Table 1). For instance, FLIP(SP (B3)) separates SP (B3) into four
copies of B(3) (see Figure 2, where the four copies are drawn with different colors). The same holds,
mutatis mutandis, for Dn.

So in these cases, FLIP produces the expected results: it divides SP (W ) intoαW subposetsP1, . . . , PαW

(where αW is given in Table 1), and each Pi is a Boolean poset.

3 Connections to the complete cd-index
In (Bla09), it is shown that the lowest-degree terms of ψ̃e,wW

0
(c,d) are non-negative. Thus we have the

theorem below.

Theorem 3.1 IfW is a finite Coxeter group, then he lowest degree terms of ψ̃e,wW
0

(c,d) are nonnegative.

In fact, these terms can be computed quite easily (see (Bla09) for details).
Now under the assumption of Theorem 2.6, SP (u, v) is EL-shellable and thin. Thus Theorem 3.1.12

in (Wac07) yields the following proposition.

Proposition 3.2 If SP (u, v) has a unique rising chain, then it is a Gorenstein* poset.

Now as a consequence of (Kar06, Theorem 4.10), we have the following theorem.

Theorem 3.3 If SP (u, v) has a unique rising chain, then the lowest degree terms of ψ̃u,v(c,d) are non-
negative.

Moreover, in the case rank(SP (u, v)) = 2, the posets Pi described before Example 1 contribute
a non-negative quantity to the lowest degree terms of ψ̃u,v(c,d). We hope to extend this result to
rank(SP (u, v)) = 3.
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