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A tight colored Tverberg theorem for maps to
manifolds (extended abstract)
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Abstract. Any continuous map of an N -dimensional simplex ∆N with colored vertices to a d-dimensional manifold
M must map r points from disjoint rainbow faces of ∆N to the same point in M , assuming that N ≥ (r−1)(d+ 1),
no r vertices of ∆N get the same color, and our proof needs that r is a prime. A face of ∆N is called a rainbow face
if all vertices have different colors.

This result is an extension of our recent “new colored Tverberg theorem”, the special case of M = Rd. It is also a
generalization of Volovikov’s 1996 topological Tverberg theorem for maps to manifolds, which arises when all color
classes have size 1 (i.e., without color constraints); for this special case Volovikov’s proofs, as well as ours, work
when r is a prime power.

Résumé. Étant donné un simplex ∆N de dimension N ayant les sommets colorés, une face de ∆N est dite arc-en-ciel,
si tous les sommets de cette face ont des couleurs différentes. Toute fonction continue d’un simplex ∆N de dimension
N aux sommets colorés vers une variété d-dimensionnelle M doit envoyer r points provenant de faces arc-en-ciel
disjointes de ∆N au mêmes points dans M ; en supposant que N ≥ (r − 1)(d + 1), un ensemble de r sommets de
∆N doit être coloré à l’aide d’au moins deux couleurs. Notre démonstration requiert que r soit un nombre premier.

Ce résultat est une extension de notre “nouveau théorème de Tverberg coloré”, le cas particulier où M = Rd. Il est
également une généralisation du théorème de Tverberg topologique de Volovikov datant de 1996, pour les fonctions
vers une variété, dont les classes de couleurs sont de taille 1 (c’est-à-dire sans contraintes de couleur). Dans ce cas
particulier, la démonstration de Volovikov et la nôtre fonctionnent lorsque r est une puissance d’un premier.

Keywords: equivariant algebraic topology, convex geometry, colored Tverberg problem, configuration space/test
map scheme, group cohomology

†The research leading to these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 247029-SDModels. Also supported by the grant ON
174008 of the Serbian Ministry of Science and Environment. pavleb@mi.sanu.ac.rs
‡Supported by Deutsche Telekom Stiftung. matschke@math.fu-berlin.de
§The research leading to these results has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 247029-SDModels.
ziegler@math.fu-berlin.de

1365–8050 c© 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAOind.html
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1 Introduction
More than 50 years ago, the Cambridge undergraduate Bryan Birch [5] showed that “3N points in a plane”
can be split into N triples that span triangles with a non-empty intersection. He also conjectured a sharp,
higher-dimensional version of this, which was proved by Helge Tverberg [15] in 1964.

In a 1988 Computational Geometry paper [2], Bárány, Füredi & Lovász noted that they needed a “col-
ored version of Tverberg’s theorem”. Soon after this Bárány & Larman [3] proved such a theorem for rN
colored points in a plane where the number of overlapping faces r is 2 or 3. Moreover, they conjectured a
general version for any higher dimension d and any number of overlaps r ≥ 2, offering a proof by Lovász
for the case r = 2 and any dimension d. A 1992 paper [17] by Živaljević & Vrećica obtained this in
a slightly weaker version, though not with a tight bound on the number of points. The proof relied on
equivariant topology and beautiful combinatorics of “chessboard complexes”.

Recently we proposed a new “colored Tverberg theorem”, which is tight, generalizes Tverberg’s origi-
nal theorem in the case of primes and gives the best known answers for the Bárány–Larman conjecture.

Theorem 1.1 (Tight colored Tverberg theorem [7]) For d ≥ 1 and a prime r ≥ 2, set N := (d +
1)(r − 1), and let the N + 1 vertices of an N -dimensional simplex ∆N be colored such that all color
classes are of size at most r − 1.

Then for every continuous map f : ∆N → Rd there are r disjoint faces F1, . . . , Fr of ∆N such that
the vertices of each face Fi have all different colors and the images under f have a point in common:
f(F1) ∩ . . . ∩ f(Fr) 6= ∅.

Fig. 1: Example of Theorem 1.1 for d = 2, r = 5, N + 1 = 13.

Here a coloring of the vertices of the simplex ∆N is a partition of the vertex set into color classes,
C1 ] . . . ] Cm. The condition |Ci| ≤ r − 1 implies that there are at least d + 2 different color classes.
In the following, a face whose all vertices have different colors, |Fj ∩ Ci| ≤ i for all 1, will be called a
rainbow face. Figure 1 shows an example for Theorem 1.1.

Theorem 1.1 is tight in the sense that it fails for maps of a simplex of smaller dimension, or if r vertices
have the same color. It implies an optimal result for the Bárány–Larman conjecture in the case where r+1
is a prime, and an asymptotically-optimal bound in general; see [7, Corollaries 2.4, 2.5]. The special case
where all vertices of ∆N have different colors, |Ci| = 1, is the prime case of the topological Tverberg
theorem, as proved by Bárány, Shlosman & Szűcs [4].
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In this talk we present an extension of Theorem 1.1 that treats continuous maps R → M from the a
subcomplex R of the N -simplex to an arbitrary d-dimensional manifold M with boundary in place of Rd.
Here, R is the rainbow subcomplex ∆N , which consists of all rainbow faces.

Theorem 1.2 (Tight colored Tverberg theorem for M ) For d ≥ 1 and a prime r ≥ 2, set N := (d +
1)(r − 1), and let the N + 1 vertices of an N -dimensional simplex ∆N be colored such that all color
classes are of size at most r − 1. Let R be the corresponding rainbow subcomplex.

Then for every continuous map f : R → M to a d-dimensional manifold, the rainbow subcomplex R
has r disjoint rainbow faces whose images under f have a point in common.

Theorem 1.2 without color constraints (that is, when all color classes are of size 1, and thus all faces
are rainbow faces andR = ∆N ) was previously obtained by Volovikov [16], using different methods. His
proof (as well as ours in the case without color constraints) works for prime powers r.

An extension of Theorem 1.2 to a prime power that is not a prime seems out of reach at this point, even
in the case M = Rd. Similarly, for the case when r is not a prime power there currently does not seem to
be a viable approach to the case without color constraints, even for M = Rd. This is the remaining open
case of the topological Tverberg conjecture [4].

Finally we remark that the restriction of the domain to a proper subcomplex of ∆N , as given by Theo-
rem 1.2, appears to be a non-trivial strengthening, even though any partition can use only faces inR ⊂ ∆N

of dimension at most N − r + 1. Let us give an example to illustrate that. Let d = r = 2 and let M
be the 2-dimensional sphere. Then N = 3 and we give the vertices of the tetrahedra ∆N all different
colors. Since the N -dimensional face of ∆N is never part of a Tverberg partition, we might guess that the
conclusion of Theorem 1.2 should hold true also for any map f : ∂∆3 →M . However this is wrong: any
homeomorphism f gives a counter-example!

2 Proof
In this extended abstract we only consider the case when f extends to a map ∆N → M on the whole
simplex. If the given number of colors used to color the vertices is at least d + 3 +

⌊
d
r−1

⌋
then the same

proof will also work for non-extendable maps f : R→M . Our proof of the general case of Theorem 1.2
needs some additional machinery due to Volovikov [16].

We prove Theorem 1.2 in this case in two steps:
• First, a geometric reduction lemma implies that it suffices to consider only manifolds M that are of the

form M = M̃ × Ig , where I = [0, 1] and M̃ is another manifold. More precisely we will need for the
second step that

(r − 1) dim(M) > r · cohdim(M), (1)

where cohdim(M) is the cohomology dimension of M . This is done in Section 2.1.
• In the second step, we can assume (1) and prove Theorem 1.2 for maps ∆N → M̃ via the configuration

space/test map scheme and Fadell–Husseini index theory, see Sections 2.2 and 2.4. The basic idea is
the following: Assuming that Theorem 1.2 has a counter-example, construct an equivariant map from
it. Then we show using equivariant topology that such a map cannot exist.

In the second step we rely on the computation of the Fadell–Husseini index of joins of chessboard com-
plexes that we obtained in [8, Corollary 2.6].
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2.1 A geometric reduction lemma
In the proof of Theorem 1.2 we may assume thatM satisfy the above inequality (1) by using the following
reduction lemma repeatedly.

Lemma 2.1 Theorem 1.2 for parameters (d, r,M, f) can be derived from the case with parameters
(d′, r′,M ′, f ′) = (d+ 1, r,M × I, f ′), where the continuous map f ′ is defined in the following.

Proof: Suppose we have to prove the theorem for the parameters (d, r,M, f). Let d′ = d + 1, r′ = r,
and M ′ = M × I . Then N ′ := (d′ + 1)(r − 1) = N + r − 1. Let v0, . . . , vN , vN+1, . . . , vN ′ denote
the vertices of ∆N ′ . We regard ∆N as the front face of ∆N ′ with vertices v0, . . . , vN . We give the new
vertices vN+1, . . . , vN ′ a new color. Define a new map f ′ : ∆N ′ →M ′ by

λ0v0 + . . .+ λN ′vN ′ 7−→ (f(λ0v0 + . . .+ λN−1vN−1 + (λN + . . .+ λN ′)vn), λN+1 + . . .+ λN ′) .

Suppose we can show Theorem 1.2 for the parameters (d′, r′,M ′, f ′). That is, we found a Tverberg
partition F ′1, . . . , F

′
r for these parameters. Put Fi := F ′i ∩ ∆N . Since f ′ maps the front face ∆N to

M × {0} and since ∆N ′ has only r − 1 < r vertices more than ∆N , already the Fi will intersect in
M × {0}. Hence the r faces F1, . . . , Fr form a solution for the original parameters (d, r,M, f). This
reduction is sketched in Figure 2. 2

v0 v1

v2

v0 v1

v2

v3

f
M

M ′

∆d

∆d′

f ′

f(v1)

f ′(v1)f ′(v0) f ′(v2)

f(v0) f(v2)

f ′(v3)

Fig. 2: Exemplary reduction in the case d = 1, r = 2, N = 2.

If the reduction lemma is applied g = 1 +
⌊

d
r−1

⌋
times, the problem is reduced from the arbitrary

parameters (d, r,M, f) to parameters (d′′, r′′,M ′′, f ′′) where M ′′ = M × Ig . Thus M ′′ has vanishing
cohomology in its g top dimensions. Therefore (r − 1) dim(M ′′) > r · cohdim(M ′′).

Having this reduction in mind, in what follows we may simply assume that the manifold M already
satisfies inequality (1).
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2.2 The configuration space/test map scheme
Now we reduce Theorem 1.2 to a problem in equivariant topology. Suppose we are given a continuous
map

f : ∆N −→M,

and a coloring of the vertex set vert(∆N ) = [N + 1] = C0 ] . . . ] Cm such that the color classes Ci are
of size |Ci| ≤ r− 1. We want to find a colored Tverberg partition, that is, pairwise disjoint rainbow faces
F1, . . . , Fr of ∆N , |Fj ∩ Ci| ≤ 1, whose images under f intersect.

The test map F is constructed using f in the following way. Let f∗r : (∆N )∗r −→Zr
M∗r be the

r-fold join of f . Since we are interested in pairwise disjoint faces F1, . . . , Fr, we restrict the domain of
f∗r to the simplicial r-fold 2-wise deleted join of ∆N , (∆N )∗r∆(2) = [r]∗(N+1). This is the subcomplex
of (∆N )∗r consisting of all joins F1 ∗ . . . ∗ Fr of pairwise disjoint faces. (See [13, Chapter 5.5] for an
introduction to these notions.) Since we are interested in colored faces Fj , we restrict the domain further
to the subcomplex

R∗r∆(2) = (C0 ∗ . . . ∗ Cm)∗r∆(2) = [r]∗|C0|
∆(2) ∗ . . . ∗ [r]∗|Cm|

∆(2) .

This is the subcomplex of (∆N )∗r consisting of all joins F1 ∗ . . . ∗ Fr of pairwise disjoint rainbow faces.
The space [r]∗k∆(2) is known as the chessboard complex ∆r,k [13, p. 163]. We write

K := (∆r,|C0|) ∗ . . . ∗ (∆r,|Cm|). (2)

Hence we get a test map
F ′ : K −→Zr

M∗r.

Let TM∗r := {∑r
i=1

1
r · x : x ∈M} be the thin diagonal of M∗r. Its complement M∗r\TM∗r is called

the topological r-fold r-wise deleted join of M and it is denoted by M∗r∆(r).
The preimages (F ′)−1(TM∗r ) of the thin diagonal correspond exactly to the colored Tverberg parti-

tions. Hence the image of F ′ intersects the diagonal if and only if f admits a colored Tverberg partition.
Suppose that f admits no colored Tverberg partition, then the test map F ′ induces a Zr-equivariant

map that avoids TM∗r , that is,
F : K −→Zr M

∗r
∆(r). (3)

We will derive a contradiction to the existence of such an equivariant map using the Fadell–Husseini index
theory.

2.3 The Fadell–Husseini index
In this section we review equivariant cohomology of G-spaces via the Borel construction. This will
provide the right tool to prove the non-existence of the test-map (3). We refer the reader to [1, Chap. V]
and [10, Chap. III] for more details.

In the followingH∗ denotes singular or Čech cohomology with Fr-coefficients, where r is a prime. Let
G a finite group and letEG be a contractible freeG-CW complex, for example the infinite joinG∗G∗· · ·,
suitably topologized. The quotient BG := EG/G is called the classifying space of G. To every G-space
X we can associate the Borel construction EG ×G X := (EG ×X)/G, which is the total space of the
fibration X ↪→ EG×G X pr1−→ BG.
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The equivariant cohomology of a G-space X is defined as the ordinary cohomology of the Borel con-
struction,

H∗G(X) := H∗(EG×G X).

If X is a G-space, we define the cohomological index of X , also called the Fadell–Husseini index [11],
[12], to be the kernel of the map in cohomology induced by the projection from X to a point,

IndG(X) := ker
(
H∗G(pt)

p∗−→ H∗G(X)
)
⊆ H∗G(pt).

The cohomological index is monotone in the sense that if there is a G-map X −→G Y then

IndG(X) ⊇ IndG(Y ). (4)

If r is odd then the cohomology of Zr with Fr-coefficients as an Fr-algebra is

H∗(Zr) = H∗(BZr) ∼= Fr[x, y]/(y2),

where deg(x) = 2 and deg(y) = 1. If r = 2 then H∗(Zr) ∼= F2[t], deg t = 1.
The index of the configuration space K, defined in (2), was computed in [8, Corollary 2.6]:

Theorem 2.2 IndZr
(K) = H∗≥N+1(BZr).

Therefore in the proof of Theorem 1.2 it remains to show that IndZr (M∗r∆(r)) contains a non-zero element
in dimension less or equal to N . Indeed, the monotonicity of the index (4) then implies the non-existence
of a test map (3), which in turn implies the existence of a colored Tverberg partition.

Let us remark that the index of K becomes larger with respect to inclusion than in Theorem 2.2 if just
one color class Ci has more than r − 1 elements. That is, in this case our proof of Theorem 1.2 does not
work anymore. In fact, for any r and d there exist N + 1 colored points in Rd such that one color class is
of size r and all other color classes are singletons that admit no colored Tverberg partition.

2.4 The index of the deleted join of the manifold
In this section we prove that IndZr

M∗r∆(r) contains a non-zero element in degree N . Together with The-
orem 2.2 we deduce that IndZrM

∗r
∆(r) is not contained in IndZr (K), hence by the monotonicity of the

index, the test-map (3) does not exist, which finishes the proof.
We have inclusions

TM∗r ↪−→
{∑

λix ∈M∗r : λi > 0,
∑

λi = 1, x ∈M
}
∼= M ×∆◦r−1 ↪−→ M∗r,

where ∆◦r−1 denotes the open (r − 1)-simplex. Since M is a smooth Zr-invariant manifold, TM∗r has a
Zr-equivariant tubular neighborhood inM∗r; see [6, Section VI.2]. Its closure can be described as the disk
bundle D(ξ) of an equivariant vector bundle ξ over M . We denote its sphere bundle by S(ξ). The fiber F
of ξ is as a Zr-representation the (d+1)-fold sum of Wr, where Wr = {x ∈ R[Zr] : x1 + . . .+xr = 0}
is the augmentation ideal of R[Zr].

The representation sphere S(F ) is of dimension N − 1. It is a free Zr-space, hence its index is

IndZr
(S(F )) = H∗≥N (BZr). (5)
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This can be directly deduced from the Leray–Serre spectral sequence associated to the Borel construction
EZr ×Zr

S(F ) → BZr, noting that the images of the differentials to the bottom row give precisely the
index of S(F ). The latter can be seen from the edge-homomorphism. For background on Leray–Serre
spectral sequences we refer to [14, Chapters 5, 6].

The Leray–Serre spectral sequence associated to the fibration S(ξ) → M collapses at E2, since N =
(r − 1)(d + 1) ≥ d + 1 and hence there is no differential between non-zero entries. Thus the map
i∗ : HN−1(S(ξ))→ HN−1(S(F )) induced by inclusion is surjective.

The Mayer–Vietoris sequence associated to the triple (D(ξ),M∗r∆(r),M
∗r) contains the subsequence

HN−1(M∗r∆(r))⊕HN−1(D(ξ))
j∗+k∗−−→ HN−1(S(ξ)) δ−−→ HN (M∗r).

We see that HN (M∗r) is zero: This follows from the formula

H̃∗+(r−1)(M∗r) ∼= H̃∗(M)⊗r,

as long as N − (r− 1) > re, where e is the cohomological dimension of M . This inequality is equivalent
to d > r

r−1e, which can be assumed by applying the reduction from Section 2.1 at least
⌊
1 + e

r−1

⌋
times.

Hence we can assume that HN (M∗r) = 0.
Furthermore inequality (1) implies that N − 1 ≥ d > cohdim(M). Hence the term HN−1(D(ξ)) =

HN−1(M) of the sequence is zero as well.
Thus the map j∗ : HN−1(M∗r∆(r)) → HN−1(S(ξ)) is surjective. Therefore the composition (j ◦

i)∗ : HN−1(M∗r∆(r)) → HN−1(S(F )) is surjective as well. We apply the Borel construction functor
EZr ×Zr ( )→ BZr to this map and apply Leray–Serre spectral sequences; see Figure 3.

0 0

N − 1 N − 1

EZr ×Zr S(F ) → BZr EZr ×Zr M∗r
∆(r) → BZr

(j ◦ i)∗

H∗(BZr)

z

H∗(BZr)

w

dN
dN

∗
NN

6= 0

Fig. 3: We associate to the map S(F )
j◦i−→ M∗r∆(r) the Borel constructions and spectral sequences to deduce that

M∗r∆(r) contains a non-zero element in dimension N .

At the E2-pages, the generator z of HN−1(S(F )) has a preimage w since (j ◦ i)∗ is surjective. At the
EN -pages (j ◦ i)∗(dN (w)) = dN (z), which is non-zero by (5). Hence dN (w) 6= 0, which is an element
in the kernel of the edge-homomorphism H∗(BZr)→ H∗Zr

(M∗∆(r)).
Therefore, the index of M∗r∆(r) contains a non-zero element in dimension N . This completes the proof

of Theorem 1.2 if f can be extended to ∆N . 2
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