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Pattern Avoidance and Fiber Bundle Structures
on Schubert Varieties

Timothy Alland
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(This talk is based on joint work with Edward Richmond.)

MSC2000: 05E15, 14M15

Permutations are known to index type A Schubert varieties. A question one can ask
regarding a specific Schubert variety is whether it is an iterated fiber bundle of Grass-
mannian Schubert varieties, that is, if it has a complete parabolic bundle structure. We
have found that a Schubert variety has a complete parabolic bundle structure if and only
if its associated permutation avoids the patterns 3412, 52341, and 635241. We find this by
first identifying when the standard projection from the Schubert variety in the complete
flag variety to the Schubert variety in the Grassmannian is a fiber bundle using what we
have called “split pattern avoidance”. In this talk, I will demonstrate how we were able to
move from a characterization of this projection in terms of the support and left descents
of the permutation’s parabolic decomposition to one that applies split pattern avoidance.
I will also give a flavor of the proof of how the three patterns mentioned above determine
whether a Schubert variety has a complete parabolic bundle structure.



Monday 3.55 Auditorium B

A simple proof of Shamir’s conjecture

Peter Allen
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(This talk is based on joint work with Julia Böttcher, Ewan Davies, Matthew Jenssen,
Yoshiharu Kohayakawa, Barnaby Roberts.)

MSC2000: 05C80

It is well known (and easy to show) that the threshold for a perfect matching in the bino-
mial random graph G(n, p) is p = Θ

(
logn
n

)
, coinciding with the threshold for every vertex

to be in an edge (and much more is known). However when one moves to hypergraphs, life
becomes difficult. In 1983, Schmidt and Shamir gave the first non-trivial values of p such
that the binomial random 3-uniform hypergraph G(3)(n, p) contains a perfect matching
with high probability, and they observed that the threshold is ω

(
logn
n2

)
, since below this

point some vertices of G(3)(n, p) are not in any edges. They conjectured that in fact the
threshold is Θ

(
logn
n2

)
, which was finally resolved in a notoriously difficult 2008 paper of

Johansson, Kahn and Vu. I will give a simpler proof.



Monday 1.45 Auditorium C

A new forbidden subgraph for 5-contractible
edges

Kiyoshi Ando
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MSC2000: 05C40

We deal with finite undirected graphs with neither self-loops nor multiple edges. For a
given graph H, a graph G is said to be H-off if G has no subgraph isomorphic to H.
Note that H is not necessary induced. An edge e of a k-connected graph is said to be
k-contractible if the contraction of the edge results in a k-connected graph. A fixed graph
H is said to be a forbidden subgraph for k-contractible edges if every H-off k-connected
graph with sufficiently large order has a k-contractible edge.

Thomassen [3] pointed out that K3 is a forbidden subgraph for k-contractible edges. The
following result due to Ando et al. [1] is an extension of the above Thomassen’s result.

Theorem 1. Every (K1 + 2K2)-off k-connected graph has a k-contractible edge.

Hereafter we consider 5-connected graphs. We call the left graph K1 + (P3 ∪K2) and the
right graph in the following Fig. 1, F (fish) and Ff (fish with fin), respectively.

Fig. 1. F and Ff

Kawarabayashi [2] proved F is a forbidden subgraph for 5-contractible edges. Since F
contains a K1 + 2K2, this is an extension of Theorem 1 for 5-connected case.

Theorem 2. Every F -off 5-connected graph has a 5-contractible edge.

Our main result is that following which is an extension of Theorem 2.

Theorem 3. Every Ff -off 5-connected graph has a 5-contractible edge.

[1] K. Ando, A. Kaneko, K. Kawarabayashi and K. Yoshimoto, Contractible edges and bowties in a
k-connected graph, Ars Combin. 64 (2002), 239–247.

[2] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory (B)
85 (2002), 207–221.

[3] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981), 351–354.
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(This talk is based on joint work with D. Goncalves, J. Rollin, T. Ueckerdt, and P.
Weiner.)

MSC2000: 05C15, 05C10, 05C70, 05C38

What happens when the vertices of a planar graph are colored with less than four colors?
We know that the coloring might be improper, i.e., contain adjacent vertices of the same
color. Can one nevertheless make sure that the color classes induce simple enough graphs,
such as vertex-disjoint unions of short paths? We shall present the history of the problem
and some recent progress towards its solution.

It is well known that the edge set of any planar graph could be covered by three forests.
What if the covering forests are required to be induced? What if these forests are required
to have large components? We show that the number of such covering forests is bounded
by a constant for planar graphs and for graphs from other large families.



Tuesday 10.55 Level 1 Auditorium

Compatible Cycle Decomposition of bad
K5-minor-free eulerian graphs

Behrooz Bagheri Gh.

behrooz@ac.tuwien.ac.at

Vienna University of Technology

(This talk is based on joint work with Herbert Fleischner, Cun-Quan Zhang, and
Zhang Zhang.)

MSC2000: 05C38, 05C45, 05C70, 05C83

Let G be an eulerian graph. For each vertex v ∈ V (G), let T (v) be a partition of the edges
incident with v into 2−subsets and set T = ∪v∈V (G)T (v), called a transition system of
G. A transition system T of G is admissible if |T ∩F | ≤ 1

2
|F | for every T ∈ T and every

edge cut F of G. A cycle decomposition C of G is called a compatible cycle decomposition
(CCD for short) of (G, T ) if |E(C) ∩ T | ≤ 1 for every cycle C ∈ C and every T ∈ T . H.
Fleischner proved that if G is planar, then for every admissible transition system T of G,
(G, T ) has a CCD. G. Fan and C.-Q. Zhang (2000, J. Combin. Theory Ser. B 78, 1-23)
showed that this result is also true for K5−minor-free graphs. We generalize this result to
all eulerian graphs that do not contain a special type of K5−minor which is called a bad
K5−minor. To this purpose, we characterise the 4−regular transitioned graphs (G, T )
without bad K5−minor in which every CCD of (G, T ) is a pair of hamiltonian cycles.



Monday 5.35 Conference Room 6

A database of distance-regular graphs

Robert Bailey
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(This talk is based on joint work with A. D. M. Jackson, C. H. Weir.)

MSC2000: 05E30

A graph with diameter d is distance-regular, if for any pair of vertices u, v at distance
i (with 1 ≤ i ≤ d), the number of neighbours of v at distances i − 1, i and i + 1
from u depends only on i, and not on the choice of u and v. Over the past few years,
I have been gathering a collection of distance-regular graphs, which I felt may be use-
ful to others. So, with the help of some grant funding, I acquired the domain name
www.distanceregular.org, and employed some students to assist with putting a cata-
logue online. In this talk, I will give some background material, a brief demonstration of
the site itself, and what may be available in the future.



Plenary lecture

Monday 11.15 Main Auditorium

Relations among partitions

R. A. Bailey

rab24@st-andrews.ac.uk

University of St Andrews

MSC2000: 05B30

Combinatorialists often consider a balanced incomplete-block design to consist of a set
of points, a set of blocks, and an incidence relation between them which satsifies certain
conditions. To a statistician, such a design is a set of experimental units with two parti-
tions, one into blocks and the other into treatments; it is the relation between these two
partitions which gives the design its properties. The most common binary relations be-
tween partitions that occur in statistics are refinement, orthgonality and balance. When
there are more than two partitions, the binary relations may not suffice to give all the
properties of the system. I shall survey work in this area, including designs such as double
Youden rectangles and triple arrays.



Monday 4.20 Auditorium B

The emergence of the square of a Hamilton cycle
in random geometric graphs

Jack Bartley
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(This talk is based on joint work with Mark Walters.)

MSC2000: 05C80

The Gilbert model is a random geometric graph defined by placing n points at random
in a square and then joining pairs of points if they are within some distance r of each
other. It is natural to ask how large r must be before familiar graph properties (such
as connectedness, Hamiltonicity, et cetera) typically occur in this model. Answering a
question of Penrose, it was shown by Balogh, Bollobás, Krivelevich, Müller and Walters
[1] that the ‘obstruction’ to Hamiltonicity is the presence of a vertex of degree at most
one. More precisely, they showed that for a typical point set, as we increase r, the graph
becomes Hamiltonian exactly once the graph has minimum degree at least two.

We consider the property of containing the square of a Hamilton cycle, showing that
the obstruction is some vertex not occurring as the root of a particular rooted graph on
five vertices – not a minimum degree condition. Perhaps surprisingly, unlike the binomial
random graph, which is not typically square Hamiltonian until it has minimum degree
Ω(

√
n), a random geometric graph is typically square Hamiltonian whilst it still has

bounded minimum degree.

[1] J. Balogh, B. Bollobás, M. Krivelevich, T. Müller, and M. Walters. Hamilton Cycles in Random
Geometric Graphs. The Annals of Applied Probability, 1053–1072, 2011.
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Christian Bean
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(This talk is based on joint work with Michael Albert, Ragnar Ardal, Anders Claesson,
Tomas Magnusson, Jay Pantone, Murray Tannock and Henning Ulfarsson.)

MSC2000: 05-04, 05A05, 05A15

“It goes as follows. Have a (as of now, human) mathematician get a brilliant idea. Teach
that idea to a computer, and let the computer ‘do research’ using that idea.” - Doron
Zeilberger.

Our goal is to create a virtual combinatorist that can enumerate permutation classes,
which are sets of permutations closed downwards by containment. We follow the mentality
set out by Zeilberger. The first step, therefore, is to have “a brilliant idea”. We call these
proof strategies. In our case, we are always working with a permutation class C, which is
a subset of all permutations. For some subset S of all permutations, a proof strategy is
a disjoint set of subsets S1, S2, . . . , Sk, such that when each subset is intersected with C
their disjoint union is equal to the intersection of S and C, i.e.

(S ∩ C) = (S1 ∩ C) t (S2 ∩ C) t . . . t (Sk ∩ C).

Consider the tree where the root node is some permutation class C. The children of a
node are subsets obtained by some proof strategy, thus form a disjoint union for their
parent while working inside C. If all the leaves of the tree are subsets of C then their
disjoint union define a description for C, while the tree itself is a proof certificate of this
description. We call such trees proof trees.

This is where the virtual combinatorist comes in. We train it how to use proof strategies
and have it search for a proof tree. Our virtual combinatorist has been able to prove the
enumeration of some permutation classes which have had entire papers devoted to them.
After the virtual combinatorist has “researched” for a bit, some permutation classes may
still have been beyond the strategies, and so the cycle starts again, the mathematicians
again try to find new proof strategies.

[1] D. Zeilberger. Enumeration schemes and, more importantly, their automatic generation. Ann. Comb.,
2(2):185195, 1998.
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Some results on the roots of the independence
polynomial of graphs

Ferenc Bencs
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MSC2000: 05C31

The independence polynomial of a graph G is

I(G, x) =
∑
k≥0

ik(G)xk,

where ik(G) denotes the number of independent sets of G of size k (note that i0(G) = 1).
In this talk we will investigate some properties of this graph polynomial.

In particular we will give a new proof for real-rootedness of the independence polynomials
of certain families of trees, which includes centipedes (Zhu’s theorem, see [2]), caterpillars
(Wang and Zhu’s theorem, see [3]), and we will prove a conjecture of Galvin and Hilyard
about the real-rootedness of the independence polynomial of the Fibonacci trees (Conj.
6.1. of [1]). Moreover we will see that the root counting measure of the independence
polynomial of any sequence of d-regular graphs with girth tending to infinity weakly
converges to a measure on the reals.

[1] D. Galvin and J. Hilyard. The independent set sequence of some families of trees, arXiv preprint
arxiv:1701.02204. 2017.

[2] Z. F. Zhu. The unimodality of independence polynomials of some graphs. Australasian Journal of
Combinatorics, 38:27–33, 2007.

[3] Y. Wang and B. X. Zhu. On the unimodality of independence polynomials of some graphs. European
Journal of Combinatorics, 32(1):10–20, 2011.
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Prolific permutations and permuted packings

David Bevan
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(This talk is based on joint work with Cheyne Homberger and Bridget Tenner.)

MSC2000: 05A05, 05B40, 06A07

A permutation of length n is k-prolific if each of the (n− k)-subsets of the entries in its
one-line notation forms a distinct subpermutation. We give a complete characterization
of k-prolific permutations for each k, and present an outline of the proof that k-prolific
permutations of length n exist for every n > k2/2 + 2k+ 1, and that none exist of smaller
size. Key to these results is a natural bijection between k-prolific permutations and certain
permuted packings of diamonds.

The permuted diamond packing corresponding to a 6-prolific permutation.



Monday 2.10 Auditorium B

Non-overlapping codes
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MSC2000: 94B60

We say that words u and v are overlapping if a non-empty proper prefix of u is equal
to a non-empty proper suffix of v, or if a non-empty proper prefix of v is equal to a
non-empty proper suffix of u. So, for example, the binary words 00000 and 01111 are
overlapping; so are the words 10001 and 11110. However, the words 11111 and 01110
are non-overlapping. A q-ary length n code is non-overlapping if all codewords u and v
(not necessarily distinct) are non-overlapping. The basic question is: what is the largest
number C(n, q) of codewords of a q-ary non-overlapping code of length n?

Non-overlapping codes were introduced by V.I. Levenshtein in 1964 (under the name
‘strongly regular code’; in later papers he refers to ‘codes without overlaps’). There has
been recent interest in these codes after they were independently rediscovered by Bajić
and Stojanović. Non-overlapping codes are interesting for synchronisation applications:
they are comma-free codes where errors do not propagate indefinitely.

This talk surveys some upper and lower bounds for C(n, q) (the best of which are sur-
prisingly close), and describes a tantalising open problem for binary codes.
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Tight lower bounds for the complexity of
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(This talk is based on joint work with  Lukasz Kowalik, Micha l Pilipczuk, Arkadiusz
Soca la and Marcin Wrochna.)

MSC2000: 05C15, 05C85

In the multicoloring problem, also known as (a : b)-coloring or b-fold coloring, we are
given a graph G and a set of a colors, and the task is to assign a subset of b colors to
each vertex of G so that adjacent vertices receive disjoint color subsets. This natural
generalization of the classic coloring problem (the b = 1 case) is equivalent to finding a
homomorphism to the Kneser graph KGa,b. It is tightly connected with the fractional
chromatic number, and has multiple applications within computer science.

We study the complexity of determining whether a graph has an (a : b)-coloring. As
shown by Cygan et al. [1], given an arbitrary n-vertex graph G and h-vertex graph H one
cannot determine in time 2o(log h)·n whether G admits a homomorphism to H, unless the
Exponential Time Hypothesis (ETH) fails. Despite the fact that when H is the Kneser
graph KGa,b we have h =

(
a
b

)
, Nederlof [3] showed a (b+ 1)n · poly(n)-time algorithm for

(a : b)-coloring. Our main result is that this is essentially optimal: there is no algorithm
with running time 2o(log b)·n unless the ETH fails. The crucial ingredient in our hardness
reduction is the usage of detecting matrices of Lindström [2], which is a combinatorial
tool that, to the best of our knowledge, has not yet been used for proving complexity
lower bounds.

[1] M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. Pachocki, and A. Soca la. Tight
bounds for graph homomorphism and subgraph isomorphism. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, 1643–1649, 2016.

[2] B. Lindström. On a combinatorial problem in number theory. Canadian Mathematical Bulletin,
8(4):477–490, 1965.

[3] J. Nederlof. Inclusion exclusion for hard problems. Master’s thesis, Utrecht University, 2008.
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In recent years there has been much progress in graph theory on questions of the following
type. What is the threshold for a certain large substructure to appear in a random graph?
When does a random graph contain all structures from a given family? And when does
it contain them so robustly that even an adversary who is allowed to perturb the graph
cannot destroy all of them? I will survey this progress, and highlight the vital role played
by some newly developed methods, such as the sparse regularity method, the absorbing
method, and the container method. I will also mention many open questions that remain
in this area.
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Recent Results on Chromatic Polynomials

Jason I. Brown
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MSC2000: 05C15

The chromatic polynomial of a finite graph G counts the number of ways the vertices of
a graph can be coloured with x colours so that adjacent vertices receive different colours.
Chromatic polynomials were initially introduced while working on the Four Colour Con-
jecture, and have been studied not only for what they can say about chromatic theory
but also as analytic and algebraic objects of interest in their own right. In this talk I will
present recent work on new bounds for chromatic polynomials as well as results on the
real part, imaginary part and moduli of their roots.
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Colourings of group divisible designs
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David Pike.)

MSC2000: 05B05, 05C15

An m-colouring of a design is an assignment of m colours to the points of the design so
that in each block, there are at least two vertices of different colours. Usually, we are
interested in colouring a design using the smallest number of colours possible, and define
this number to be the design’s chromatic number.

In a group divisible design, the point set V is partitioned into subsets called groups, and
the blocks of the design are subsets of V such that each pair of points occurs together in
a group or in exactly one block, but not both. In this talk, we present recent progress on
colourings of group divisible designs.
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Alexander Burstein

aburstein@howard.edu

Howard University

(This talk is based on joint work with Walter Stromquist.)
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Mansour and Shattuck [4] have shown that exactly 9 classes of permutations avoiding
triples of patterns of length 4 have the enumeration sequence that is the binomial trans-
form of Fine’s sequence [5]. Four of these classes were separately shown previously to
be enumerated by this sequence (see [1, 2, 3, 7]), while five others are new. The same
sequence also enumerates unimodal inversion sequences (inversion sequences are reversals
of Lehmer codes) [6].

We generalize these findings in two different ways.

• For some of the above sets of patterns Ti (i = 1, . . . , 9), we find encodings of all
permutations by inversion sequences so that the inversion sequences corresponding
to the set Av(Ti) of Ti-avoiders are unimodal.

• For the same sets of patterns Ti, we use the above encodings of Av(Ti) to generalize
the Wilf-equivalence of Ti’s to a Wilf-equivalence of families of similarly related sets
of patterns of any size, obtained by inflating a certain entry of each permutation in
Ti by the same block. We also conjecture similar generalizations for all but one of
the remaining classes.

[1] M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan, H. van Ditmarsch, Sorting
Classes, Electron. J. Combin. 12 (2005), R31.

[2] J. Bloom, A. Burstein, Egge triples and unbalanced Wilf-equivalence, Austral. J. Combin. 64(1)
(2016), 232-251.

[3] R. Brignall, S. Huczyncka, V. Vatter, Simple permutations and algebraic generating functions,
J. Combin. Th. Ser. A, 115 (2008), 423-441.

[4] T. Mansour, M. Shattuck, Nine classes of permutations enumerated by binomial transform of Fine’s
sequence, J. Discrete Appl. Math., in press, https://doi.org/10.1016/j.dam.2017.04.015.

[5] OEIS Foundation Inc. (2017), The On-Line Encyclopedia of Integer Sequences,
http://oeis.org/A033321.

[6] C.D. Savage, Inversion sequences, 12th International Conference on Permutation Patterns (PP 2014),
Johnson City, TN, USA, July 7-11, 2014.

[7] R. Smith, V. Vatter, A stack and a pop stack in series, Austral. J. Combin. 58(1) (2014), 157-171.
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The notion of synchronization from automata theory has been extended to permutation
groups [1]. I extend it further, to association schemes. An important class of association
schemes introduced in the context of coding theory by Delsarte [2] consists of the Johnson
schemes. Investigating synchronization and the related property of separation for these
schemes leads to a conjecture which would extend the result of Keevash [3] on the existence
of Steiner systems. I will mention evidence for this conjecture, some of it joint work with
John Bamberg.

[1] João Araújo, Peter J. Cameron and Benjamin Steinberg, Between primitive and 2-transitive: Syn-
chronization and its friends, arXiv:1511.03184

[2] Philippe Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res.
Repts. Supplement 10 (1973).

[3] Peter Keevash, The existence of designs, arXiv:1401.3665
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The topic of this talk is list coloring of graphs. In this model each vertex of a graph is
assigned a list (set) of colors and the task is then to construct a proper coloring of the
graph where each vertex gets a color from its list. I shall discuss a relatively new variation
on list coloring where the color lists are assigned randomly: let G = G(n) be a graph on
n vertices, and assign to each vertex v of G a list L(v) of colors by choosing each list
independently and uniformly at random from all k-subsets of a color set of size σ(n). I
will discuss various conditions implying that with probability tending to 1, as n→ ∞, G
has a proper coloring with colors from the random lists.
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The spt-Function of Andrews
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The spt-function spt(n) was introduced by Andrews as the weighted counting of partitions
of n with respect to the number of occurrences of the smallest part. Andrews showed that
spt(5n+ 4) ≡ 0 (mod 5), spt(7n+ 5) ≡ 0 (mod 7) and spt(13n+ 6) ≡ 0 (mod 13). Since
then, congruences of spt(n) have been extensively studied. Folsom and Ono obtained
congruences of spt(n) mod 2 and 3. They also showed that the generating function of
spt(n) mod 3 is related to a weight 3/2 Hecke eigenform with Nebentypus. Combinatorial
interpretations of congruences of spt(n) mod 5 and 7 have been found by Andrews, Garvan
and Liang by introducing the spt-crank of a vector partition. Chen, Ji and Zang showed
that the set of partitions counted by spt(5n+ 4) (or spt(7n+ 5)) can be divided into five
(or seven) equinumerous classes according to the spt-crank of a doubly marked partition.
Let NS(m,n) denote the net number of S-partitions of n with spt-crank m. Andrews,
Dyson and Rhoades conjectured that {NS(m,n)}m is unimodal for any n. Chen, Ji and
Zang gave a constructive proof of this conjecture.

In this survey, we summarize developments on congruence properties of spt(n) estab-
lished by Andrews, Bringmann, Folsom, Garvan, Lovejoy and Ono et al., as well as their
combinatorial interpretations. Generalizations and variations of the spt-function are also
discussed. Moreover, we give an overview of asymptotic formulas of spt(n) obtained by
Ahlgren, Andersen and Rhoades et al. We conclude with some conjectures on inequalities
on spt(n), which are reminiscent of inequalities on the partition function p(n) due to
DeSalvo and Pak, and Bessenrodt and Ono. Finally, we observe that, beyond the log-
concavity, p(n) and spt(n) satisfy higher order inequalities based on polynomials arising
in the invariant theory of binary forms. In particular, we conjecture that the higher order
Turán inequality 4(a2n − an−1an+1)(a

2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 > 0 holds for
p(n) when n ≥ 95 and for spt(n) when n ≥ 108.
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New applications of Riordan arrays
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Let κ[[z]] be the ring of formal power series over an integral domain κ. A Riordan array
denoted (g, f) is an infinite lower triangular matrix constructed out of two functions
g, f ∈ κ[[z]] with f(0) = 0 in such a way that its kth column generating function is gfk

for k ≥ 0. In many contexts we see that the Riordan arrays are used as a machine to
generate new approaches in combinatorics.

This talk is devoted to discussing new applications of Riordan arrays. We introduce some
applications arising in combinatorics, graph theory, and the Riemann hypothesis, respec-
tively. More specifically, the talk consists of three parts as follows. First, we introduce the
concept of q-analogue for Riordan arrays (g, f) and its applications to combinatorics. In
particular, we show that the q-Laguerre polynomials defined by the Eulerian generating
function can be expressed not only in terms of the inversions of a permutation but also in
terms of q-rook numbers. Second, we introduce the concept of Riordan graphs associated
to Riordan arrays (g, f) modulo 2 over the ring of integers. We denote the graph by
RGn(g, f) and we explore their structural properties. Finally, we use the Riordan arrays
(g, f) to find a large class of matrices called the Riordan-Redheffer matrix of order n
with the same determinant as the Mertens function M(n) =

∑n
k=1 µ(k) where µ is the

Möbius function. It is well-known that the Riemann hypothesis is true if and only if
M(n) = O(n1/2+ε) for all positive ε. We give several examples of Riordan-Redheffer ma-
trix that reveal interesting spectral properties, and some conjectures on its eigenvalues
will be posed.

[1] W. W. Barrett and T. J. Jarvis, Spectral properties of a matrix of Redheffer, Linear Algebra Appl.,
162-164: 673-683, 1992.

[2] D. A. Cardon, Matrices related to Dirichlet series, J. Number Theory 130:27-39, 2010.

[3] G.-S. Cheon and J.-H. Jung, Some combinatorial applications of the q-Riordan matrix, Linear Algebra
Appl., 482:241–260, 2015.

[4] I.M. Gessel, Generalized rook polynomials and orthogonal polynomials, in: D. Stanton, ed., q-Series
and Partitions, Springer, Berlin, 1989.
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A tournament is an irreflexive, complete, asymmetric digraph, and the score sv of a vertex
v in a tournament is the number of arcs directed away from that vertex. A sequence
S = [s1, s2, · · · , sn] of non-negative integers in non-decreasing order is a score sequence
if it realizes some tournament. Landau in 1953 characterized the score sequences of a
tournament. An oriented graph is a digraph with no symmetric pairs of directed arcs
and without self loops. In 1991, Avery obtained the characterization of score sequences
in oriented graphs. An r-digraph D is an orientation of a multigraph that is without
loops and contains at most r edges between any pair of distinct vertices. The mark of
a vertex vi in D is pi = r(n − 1) + d+i − d−i , where d+i and d−i are respectively the
outdegree and indegree of vi. The sequence of marks is called the mark sequence of D.
One representation of a multidigraph is a competition in which n participants play each
other r times and the result includes the ties. Pirzada and Samee extended the concept
of scores to digraphs. We characterize mark sequences in bipartite multidigraphs, which
also result in construction algorithms.

[1] P. Avery. Score sequences of oriented graphs. J. Graph Theory, 15, 3: 251–257, 1991.

[2] T. A. Chishti and U. Samee. Mark sequences in bipartite multidigraphs and constructions. Acta
Univ. Sapien. Math., 4, 1:53–64, 2012.

[3] H. G. Landau, On dominance relations and the structure of animal societies: III, The condition for
a score structure, Bull. Math. Biophysics, 15:143–148, 1953.

[4] S. Pirzada and U. Samee, Mark sequences in digraphs, Seminare Loth. de Combinatorie, 55:Art. B,
2006.
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In this talk I will presents a combinatorial construction of low-density parity-check (LDPC)
codes from difference covering arrays. Gallagher originally constructed LDPC by ran-
domly allocating bits in a sparse paritycheck matrix. However in the past 20 years re-
searchers have used a variety of more structured approaches, with recent constructions
using balanced incomplete block designs (BIBDs) and Latin squares over finite fields
delivering well-structured LDPC. However many of these constructions have some limi-
tations. Here I present a construction of LDPC codes of length 4n2 − 2n for all n using
the cyclic group of order 2n. These codes achieve high information rate, have girth at
least 6 and have minimum distance 6 for n odd.

[1] D. Donovan, A. Rao and E. Yazici. High rate LDPC codes from difference covering arrays.
https://arxiv.org/abs/1701.05686, 2017.
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Path-factors and odd components
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For a graph G and an integer l ≥ 1, we let cl(G) denote the number of components of G
having order l. For an integer l ≥ 2, we let Pl denote the path of order l. By a {P2, P2k+1}-
factor of a graph G, we mean a spanning subgraph of G each of whose components is
isomorphic to P2 or P2k+1.
It is well-known that a graph G has a {P2, P3}-factor if and only if c1(G−X) ≤ 2|X| for

all X ⊆ V (G). In [1], it was shown that if a graph G satisfies c1(G−X) + 2c3(G−X)
3

≤ 4|X|
3

for all X ⊆ V (G), then G has a {P2, P5}-factor. The following conjecture was also made
in [2].

Conjecture 1. Let k ≥ 3 be an integer, and let G be a graph such that
∑

0≤j≤k−1 c2j+1(G−
X) ≤ (4k+6)|X|

8k+3
for all X ⊆ V (G). Then G has a {P2, P2k+1}-factor.

For k = 3, 4, Conjecture 1 was affirmatively settled in [3]. For k ≥ 5, we have recently
proved the following theorem.

Theorem 2. Let k ≥ 5, be an integer, and let G be a graph such that
∑

0≤j≤k−1 c2j+1(G−
X) ≤ 5|X|

6k2
for all X ⊆ V (G). Then G has a {P2, P2k+1}-factor.

On the other hand, for k ≥ 29, we have constructed examples of graphs G with no
{P2, P2k+1}-factor such that

∑
0≤j≤k−1 c2j+1(G−X) ≤ (32k+141)|X|

72k−78 for all X ⊆ V (G), which
show that Conjecture 1 is false for k ≥ 36. These examples are related to examples of
graphs constructed in [1] in connection with the famous conjecture of Chvátal concerning
the hamiltonicity of graphs with high toughness.
In this talk, I will describe how we have modified the idea used in [1] to construct our
examples. I will also describe the possibility of improving the coefficient 5

6k2
in Theorem

2.

[1] D. Bauer, H. J. Broersma, and H. J. Veldman. Not every 2-tough graph is Hamiltonian. Discrete
Applied Mathematics, 99:317–321, 2000.

[2] Y. Egawa and M. Furuya. The existence of a path-factor without small odd paths. preprint.

[3] Y. Egawa and M. Furuya, Path-factors involving paths of order seven and nine. Theory and Appli-
cations of Graphs, 3(1):#5, 2016.
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The consecutive pattern poset P is the infinite partially ordered set of all permutations
where σ ≤ τ if τ has a subsequence of adjacent entries in the same relative order as the
entries of σ. For example, the interval [12, 213546] in P in shown here:

12

123 213 132

2134 1243 1324

21354 12435

213546

A recursive expression for the Möbius function of P was given by Bernini–Ferrari–
Steingŕımsson [1] and Sagan–Willenbring [3], inspired by a (still open) question of Wilf
[4] asking for the Möbius function of intervals in the poset defined by classical pattern
containment, where the entries in a subsequence are not required to be adjacent.

Following up on their work, we study the structure of the intervals in P from topological,
poset-theoretic, and enumerative perspectives. In particular, we prove that all intervals
are rank-unimodal and strongly Sperner, and we characterize disconnected and shellable
intervals. We also show that most intervals are not shellable and have Möbius function
equal to zero. Most of this talk is based on the results in [2].

[1] A. Bernini, L. Ferrari and E. Steingŕımsson. The Möbius function of the consecutive pattern poset.
Electron. J. Combin. 18, Paper 146, 2011.

[2] S. Elizalde and P. McNamara. The structure of the consecutive pattern poset. Int. Math. Res. Not.
IMRN, 2017, to appear. doi:10.1093/imrn/rnw293.

[3] B. Sagan and R. Willenbring. Discrete Morse theory and the consecutive pattern poset. J. Algebraic
Combin. 36:501-514, 2012.

[4] H. Wilf. The patterns of permutations. Discrete Math. 257:575–583, 2002.
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I will describe a class of combinatorial games on graphs in which two players antago-
nistically build a geometric representation of a given graph. For a large class of these
games, determining whether a given instance is a winning position for the next player is
PSPACE-hard. I will outline this hardness result, and mention some cases in which iden-
tifying winning positions is efficiently computable. I will conclude by posing several open
questions, and pondering aloud about the relationship between the hardness of solving
these games and the number of canonical representations of an input graph.
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The degree-diameter problem seeks to find the largest possible number of vertices in
a graph having given diameter and given maximum degree. Very often the problem is
studied for restricted families of graph such as vertex-transitive or Cayley graphs, with
the goal being to find an infinite family of graphs with good asymptotic properties.

A simple counting argument shows that for a fixed diameter k, an undirected graph of
maximum degree d has order (asymptotically) at most dk. Our goal is to find a family of
graphs of diameter k such that as the degree d becomes large, the order of our graphs is
within a multiplicative constant of the asymptotic upper bound.

Cayley graphs are a natural means to attack the degree-diameter problem, because the
constraint on the diameter of the graph translates naturally into a statement about
multiplication within the associated group. We are thus able to express our graph problem
directly in group-theoretic terms.

Much of the existing literature is focused on the diameter two case, with a variety of
families of group employed to yield good bounds for diameter two Cayley graphs. In this
case and also for larger diameters, a common approach is to use some kind of semidirect
product construction which can often yield useful groups which may be covered efficiently
by small generating sets.

We will describe a new construction, which instead uses matrix groups over finite fields.
This new construction has been used to improve the existing asymptotic bounds for
Cayley graphs of diameter 3, valid for all sufficiently large degrees d.
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This year is the centenary of the birth of W. T. (Bill) Tutte (1917–2002). This talk reviews
some of his earliest work, which contains seeds from which much of modern graph theory
has grown. We emphasise the Tutte polynomial [2, 3, 4, 5], which plays a central role in
the study of counting on graphs.

Tutte was a chemistry undergraduate at Cambridge in the late 1930s when he and three
friends became interested in the recreational puzzle of “squaring the square” [1]. The
ideas they developed and used to solve this puzzle drew Tutte into the serious study
of mathematics, especially graph theory. After an astonishingly successful detour into
cryptanalysis during the Second World War, Tutte gained his PhD at Cambridge [3]. He
then moved to Toronto and, later, Waterloo. Although he worked in a relatively young
field, he became arguably one of the greatest mathematicians of the twentieth century.

[1] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte. The dissection of rectangles into
squares. Duke Math. J., 7:312–340, 1940.

[2] W. T. Tutte. A ring in graph theory. Proc. Camb. Phil. Soc., 43:26–40, 1947.

[3] W. T. Tutte. An Algebraic Theory of Graphs. PhD thesis, University of Cambridge, 1948.

[4] W. T. Tutte. A contribution to the theory of chromatic polynomials. Canadian J. Math., 6:80–91,
1954.

[5] W. T. Tutte. On dichromatic polynomials. J. Combin. Theory, 2:301–320, 1967.

[6] W. T. Tutte. Graph Theory as I Have Known It. Oxford, 1998.
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In extremal graph theory we often pursue the goal of maximising chosen properties of
a graph with respect to given constraints. One problem within the area is the degree
diameter problem, in which we attempt to find the graphs of largest possible size with
a given degree and diameter. In this talk we consider the best known infinite family of
directed graphs, the Gómez Graphs, with large size for a given degree and diameter. Their
construction leads trivially to the observation that the symmetric group is a subgroup of
their full automorphism group. By showing that this obvious subgroup is in fact the full
automorphism group we are able to show when this family of graphs is in fact Cayley.
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Abstract

Restricted growth functions (RGFs) avoiding the pattern 1212 are in natural
bijection with noncrossing partitions. Motivated by recent work of Campbell et
al. [1], we study five classical statistics bk, ls, lb, rs and rb on 1212-avoiding RGFs.
We show the equidistribution of (ls, rb, lb, bk) and (rb, ls, lb,bk) on 1212-avoiding
RGFs by constructing a simple involution. To our surprise, this result was already
proved by Simion [2] 22 years ago via an involution on noncrossing partitions. Our
involution, though turns out essentially the same as Simion’s, is defined quite dif-
ferently and has the advantage that makes the discussion more transparent. Conse-
quently, a multiset-valued extension of Simion’s result is discovered. Furthermore,
similar approach enables us to prove the equidistribution of (mak, rb, rs,bk) and
(rb,mak, rs,bk) on 1212-avoiding RGFs, where “mak” is a set partition statistic
introduced by Steingŕımsson [3].

Through two bijections to Motzkin paths, we also prove that the triple of clas-
sical permutation statistics (exc + 1,den, inv − exc) on 321-avoiding permutations
is equidistributed with the triple (bk, rb, rs) on 1212-avoiding RGFs, which gen-
eralizes another result of Simion [2]. In the course, an interesting q-analog of the
γ-positivity of Narayana polynomials is found.

Keywords: restricted growth function; pattern avoidance; noncrossing partitions;
partition statistics; Narayana polynomials

[1] L.R. Campbell, S. Dahlberg, R. Dorward, J. Gerhard, T. Grubb, C. Purcell and B.E. Sagan, Re-
stricted growth function patterns and statistics, preprint, arXiv:1605.04807v2.

[2] R. Simion, Combinatorial statistics on noncrossing partitions, J. Combin. Theory Ser. A, 66 (1994),
270–301.

[3] E. Steingŕımsson, Statistics on ordered partitions of sets, preprint, arXiv:0605670v5.
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We say that a graph F strongly arrows a pair of graphs (G,H) and write F
ind−→(G,H)

if any 2-colouring of its edges with red and blue leads to either a red G or a blue H
appearing as induced subgraphs of F . The induced Ramsey number, IR(G,H) is defined

as min{|V (F )| : F
ind−→(G,H)}. The existence of this number was proved independently

by Deuber [1], Erdős, Hajnal and Pósa [2] and Rödl [6]. It is not much known about
the behaviour of the induced Ramsey number and the results are mostly of asymptotic
type. Moreover these results are generally upper bounds. The only known exact results
(not concerning the pairs of small graphs) are for a pair of stars by Harary, Nešetril
and Rödl [5], matching versus complete graphs by Gorgol and  Luczak [4] and for stars
versus complete graphs by Gorgol [3]. Similarly as for lower bounds some general bound
is known for triangle-free graphs versus complete graphs [3].

In the talk we will show the lower bound of the induced Ramsey number in terms of the
independence and clique numbers. This bound is sharp, i.e. there are pairs of graphs for
which this lower bound is actually the exact value of the induced Ramsey number.

[1] W. Deuber, A generalization of Ramsey’s theorem, Infinite and finite sets (R. Rado A. Hajnal and
V. Sós, eds.), vol. 10, North-Holland, pp. 323–332, 1975.

[2] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, Infinite and finite
sets (R. Rado A. Hajnal and V. Sós, eds.), vol. 10, North-Holland, pp. 585–595, 1975.

[3] I. Gorgol, A note on a triangle-free - complete graph induced Ramsey number, Discrete Math. 235,
1–3:159-163, 2001.

[4] I. Gorgol and T.  Luczak, On induced Ramsey numbers, Discrete Math. 251, 1–3:87-96, 2002.

[5] F. Harary, J. Nešetril and V. Rödl, Generalized Ramsey theory for graphs. XIV. Induced Ramsey
numbers, Graphs and other combinatorial topics (Prague, 1982) 59:90-100, 1983.

[6] V. Rödl, A generalization of Ramsey theorem, Ph.D. thesis, Charles University, Prague, Czech Re-
public, pp. 211–220, 1973.
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A graph G is called an L1-graph if, for each triple of vertices u, v, w with d(u, v) = 2 and
w ∈ N(u) ∩ N(v), d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| − 1. Asratian et al. [1] proved
that connected L1-graphs of order at least 3 such that |N(u) ∩N(v)| ≥ 2 for every pair
of vertices u, v with d(u, v) = 2 are Hamiltonian (with some exceptions).

In this talk we demonstrate that any nonhamiltonian cycle in such a graph can be ex-
tended to a larger cycle containing all vertices of the original cycle and at most two other
vertices. Analogous results are given for paths in which the endpoints do not have any
common neighbors. These results are sharp; in particular not every graph from this class
is pancyclic.

[1] A. S. Asratian, H. J. Broersma, J. van den Heuvel, and H. J. Veldman. On graphs satisfying a local
Ore-type condition. J. Graph Theory, 21(1):1–10, 1996.
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The present paper (see ArXiv, 2016) is devoted to asymptotic enumeration of decom-
posable combinatorial structures, such as for example, weighted partitions. We prove the
necessity of the main sufficient condition of Meinardus for subexponential rate of growth
of the number of structures, having multiplicative generating functions of a general form
and establish a new necessary and sufficient condition for the normal local limit theorem
for the aforementioned structures. The latter result allows to encompass in our study
structures with weights having gaps in their supports. The paper continues the work in
[1] and [2].

[1] Granovsky, B, Stark, D . Developments in the Khintchine-Meinardus probabilistic method for asymp-
totic enumeration EJC, 22,4, 2015.

[2] Granovsky, B. and Stark, D. A Meinardus theorem with multiple singularities. Comm. Math. Phys.
314 329–350, (2012).
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The concept of a generalized polygon was introduced by Tits in 1959. Perhaps the simplest
definition is the following. A partial linear space S is an ordered pair (P,L) where P is
a set of points and L is a set of lines such that every pair of points is incident with at
most one line. Consider the bipartite point-line incidence graph G of S. If the girth of G
is twice its diameter, then S is a generalized polygon. Clearly the incidence graph of an
n-gon is the cyclic graph on 2n vertices.

By the Feit-Higman Theorem (1964), the only finite examples are thin (two points on
each line or two lines on each point) or the diameter is 3, 4, 6 or 8. So in particular there
are no generalized pentagons. In this talk I will present an alternative way to generalize
the pentagon introduced by Simeon Ball et alia in [1] and discuss what is know about
these structures.

[1] S. Ball, J. Bamberg, A. Devillers and K. Stokes. An alternative way to generalize the pentagon. J.
Combin. Des., 21:163–179, 2013.

[2] T. S. Griggs and K. Stokes. On pentagonal geometries with block size 3, 4 or 5. Springer Proc. in
Math. & Stat., 159:147–157, 2016.
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The Stinson-Wei traceability scheme (known as traceability scheme) [5] was proposed
for broadcast encryption as a generalization of the Chor-Fiat-Naor traceability scheme
(known as traceability code) [1]. Cover-free family was introduced by Kautz and Singleton
[4] in the context of binary superimposed code. Let (X ,B) be a set system with B ⊆

(X
w

)
,

|X | = v, and |B| = M .

(1) (X ,B) is a t-traceability scheme t-TS(w,M, v) provided that for every choice of s ≤ t
blocks B1, B2, . . . , Bs ∈ B and for any w-subset T ⊆

⋃
1≤j≤s Bj, there does not exist

a block B ∈ B \ {B1, B2, . . . , Bs} such that |T ∩B| ≥ |T ∩Bj| for all 1 ≤ j ≤ s.

(2) (X ,B) is a t-cover-free family t-CFF(w,M, v) provided that for any t + 1 distinct
blocks B0, B1, . . . , Bt ∈ B, we have

B0 *
⋃

1≤i≤t

Bi.

In this talk, first, we find a new relationship between a TS and a CFF, that is, a t-TS is
a t2-CFF. Based on this interesting discovery and some known results of CFF by Erdős,
Frankl and Füredi [3], we derive new upper bounds for the number of blocks in a t-TS,
which improve the best known bounds in [2]. Next, by using combinatorial designs, we
construct several infinite families of optimal t-TS which attain our new upper bounds.
We also provide a constructive lower bound for t-TS, the size of which has the same order
of magnitude as our general upper bound.

[1] B. Chor, A. Fiat, and M. Naor. Tracing traitors. in Cryto‘94 (Lecture Notes in Computer Science),
Berlin, Heidelberg, New York: Springer-Verlag, 839:480–491, 1994.

[2] M. J. Collins. Upper bounds for parent-identifying set systems. Des. Codes Cryptogr., 51:167–173,
2009.

[3] P. Erdős, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by the union of
r others. Israel J. Math., 51:79–89, 1985.

[4] W. H. Kautz and R. C. Singleton. Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory,
10:363–377, 1964.

[5] D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes and
frameproof codes. SIAM J. Discrete Math., 11:41–53, 1998.
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Many important problems in combinatorics and other related areas can be phrased in the
language of independent sets in hypergraphs. Recently Balogh, Morris and Samotij [1],
and independently Saxton and Thomason [8] developed very general container theorems
for independent sets in hypergraphs; both of which have seen numerous applications to
a wide range of problems. We use the container method to prove results that correspond
to problems concerning tuples of disjoint independent sets in hypergraphs.

We generalise the random Ramsey theorem of Rödl and Ruciński [5, 6, 7] by providing a
resilience analogue. This result also implies the random version of Turán’s theorem due
to Conlon and Gowers [2] and Schacht [9]. We prove a general subcase of the asymmetric
random Ramsey conjecture of Kohayakawa and Kreuter [4]. Both of the above results
in fact hold for uniform hypergraphs. We also strengthen the random Rado theorem of
Friedgut, Rödl and Schacht [3] by proving a resilience version of the result.

[1] J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28
(2015), 669–709.

[2] D. Conlon and W.T. Gowers, Combinatorial theorems in sparse random sets, Ann. Math. 84 (2016),
367–454.

[3] E. Friedgut, V. Rödl and M. Schacht, Ramsey properties of random discrete structures, Random
Structures & Algorithms 37 (2010), 407-436.

[4] Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving
cycles, Random Structures & Algorithms 11 (1997), 245–276.

[5] V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, in Combi-
natorics, Paul Erdős is Eighty, Vol. 1, 317–346, Bolyai Soc. Math. Studies, János Bolyai Math. Soc.,
Budapest, 1993.

[6] V. Rödl and A. Ruciński, Random graphs with monochromatic triangles in every edge coloring,
Random Structures & Algorithms 5 (1994), 253–270.

[7] V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995),
917–942.

[8] D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), 925–992.

[9] M. Schacht, Extremal results for random discrete structures, Ann. Math. 184 (2016), 331–363.
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For a given chess piece and a given board a graph G can be constructed. In this graph each
vertex corresponds to a square of the board and an edge exists between two vertices A and
B if a chess piece on the square represented by A can reach the square represented by B in
a single move. The vertex independence number β0(G) and domination number γ(G) can
be determined for this chess graph by studying corresponding positional chess problems.
This talk will identify these positional chess problems and explore the solutions for the
bishop chess piece on a variety of different boards, including abstractions to hexagonal
chess boards.
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For bipartite graphs G1, G2, . . . , Gk, the bipartite Ramsey number b(G1, G2, . . . , Gk) is
the least positive integer b so that any coloring of the edges of Kb,b with k colors will
result in a copy of Gi in the ith color for some i. In this paper, our main focus will
be to bound the following numbers: b(C2t1 , C2t2) and b(C2t1 , C2t2 , C2t3) for all ti ≥ 3,
b(C2t1 , C2t2 , C2t3 , C2t4) for 3 ≤ ti ≤ 9, and b(C2t1 , C2t2 , C2t3 , C2t4 , C2t5) for 3 ≤ ti ≤ 5.
Furthermore, we will also show that these mentioned bounds are generally better than
the bounds obtained by using the best known Zarankiewicz-type result.



Monday 4.20 Auditorium A

A variation of Ryser’s theorem for partial
(ν1, · · · , νn)-latinized squares

A. J. W. Hilton

a.j.w.hilton@reading.ac.uk

University of Reading and QMUL

MSC2000: 05B15

In 1951 Ryser gave a necessary and sufficient condition for an r×s partial latin rectangle
b be extended to a p × p latin square P . Hilton and Johnson later showed that Ryser’s
condition is equivalent to the requirement that Hall’s condition be satisfied (more par-
ticularly, that one of the main inequalities constituting Hall’s condition be satisfied). We
consider here the following variation of Ryser’s theorem. We have n symbols, σ1, · · · , σn
where n ≥ p, and n positive integers ν1, ν2, · · · , νn with 1 ≤ νi ≤ p (1 ≤ i ≤ n) and∑n

i=1 = p2. An r×s partial (ν1, · · · , νn)-latinized rectangle R is an r×s matrix with cells
filled from {σ1, · · · , σn} in such a way that each symbol σi occurs at most once in any row
and at most once in any column, and at most ν1 times altogether. If r = s = p then we
have a (ν1, · · · , νn)-latinized square, and if also n = p we have a latin square of order n.
It is known that a (ν1, · · · , νn)-latinized square exists for every choice of ν1, · · · , νn with∑n

i=1 νi = p2 and 1 ≤ νi ≤ p. We show that a partial r×s (ν1, · · · , νn)-latinized rectangle
can be completed to a p× p latinized square if and only if P satisfies Hall’s (ν1, · · · , νn)
Constrained Condition, where P is the p× p matrix with R in the top left-hand corner,
the other cells being blank, and Hall’s (ν1, · · · , νn)-constrained condition is a suitable
generalization of Hall’s condition for a System of District Representations.



Mini-symposium
Emerging methods in Extremal Combinatorics Tuesday 4.05 Auditorium A

Tilings in graphons

Jan Hladký

honzahladky@gmail.com

TU Dresden

(This talk is based on joint work with Martin Doležal, Ping Hu, and Diana Piguet.)

MSC2000: 05C35, 05C80

The talk is based on papers available as [1, 2, 3].

We introduce a counterpart to the notion of vertex disjoint tilings by copy of a fixed
graph F to the setting of graphons. The case F = K2 gives the notion of matchings
in graphons. We give a transference statement that allows us to switch between the fi-
nite and limit notion, and derive several favorable properties, including the LP-duality
counterpart to the classical relation between the fractional vertex covers and fractional
matchings/tilings, and discuss connections with property testing. We also study the struc-
ture of the matching-, and vertex cover- polytons which are extensions of the respective
polytope concepts to the setting of graphons.

We give several applications of our theory to finite graphs. The most notable of these is
a strengthening of a theorem of Komlós [4] in which he determined the minimum degree
threshold for tiling a given fraction of a host graph by copies of an arbitrary graph F .

[1] M. Doležal and J. Hladký. Matching polytons. arXiv: 1606.06958.

[2] J. Hladký, P. Hu, and D. Piguet. Tilings in graphons. arXiv: 1606.03113.

[3] J. Hladký, P. Hu, and D. Piguet. Komlós’s tiling theorem via graphon covers. arXiv: 1607.08415.

[4] J. Komlós, Tiling Turán Theorems, Combinatorica 20(2):203–218, 2000.



Plenary lecture

Monday 9.00 Main Auditorium

Switching techniques for edge decompositions of
graphs

Daniel Horsley

danhorsley@gmail.com

Monash University

MSC2000: 05C70, 05B07, 05C65

This talk concerns a class of techniques, sometimes referred to as edge switching tech-
niques, that enable a new edge decomposition of a graph to be obtained from an existing
one by interchanging edges between the subgraphs in the decomposition. These tech-
niques can be viewed as generalisations of classical path switching methods for proper
edge colourings. Their use in other edge decomposition settings dates back at least to
1980, but the last ten years have seen them rapidly developed and employed to resolve
Lindner’s conjecture on embedding partial Steiner triple systems, Alspach’s cycle decom-
position problem, and numerous other questions. I aim to give a gentle introduction to
these techniques and to some of their most significant applications beyond edge colouring.



Thursday 1.45 Auditorium A

Graph classes under homomorphic image order

Sophie Huczynska

sh70@st-andrews.ac.uk

University of St Andrews

(This talk is based on joint work with Nik Ruskuc.)

MSC2000: 05C60

Combinatorial structures have been considered under various different orders, including
substructure order (both standard and induced forms), minor order and homomorphism
order. In this talk, I will introduce and discuss the homomorphic image order, corre-
sponding to the existence of a surjective homomorphism between two structures. I will
focus on partial well-order and antichains, exploring how the homomorphic image order
behaves in the context of graphs and graph-like structures. In particular, I will discuss
a near-complete characterization of partially well-ordered avoidance classes with one ob-
struction.



Monday 3.30 Auditorium B

Subgraph counts for dense graphs with specified
degrees

Mikhail Isaev

Isaev.M.I@gmail.com

School of Mathematics and Statistics, UNSW Sydney

(This talk is based on joint work with C. Greenhill and B.D. McKay.)

MSC2000: 05C80, 05A16

We consider a uniformly chosen random graph G with given degree sequence in the
dense range (degrees approximately a constant fraction of the number of vertices). For
a given graph H, we find expected numbers of subgraphs and induced subgraphs of G
isomorphic to H. Based on results of [2], these problems are reduced to determining of
the expectation of certain functions of a random permutation. This is done by applying a
general theory (developed in [1]) for the exponential of a martingale. As illustrations, we
present formulas for expected numbers of perfect matchings, cycles and spanning trees in
this random graph model.

[1] M. Isaev and B.D. McKay. Complex martingales and asymptotic enumeration. Random Structures
and Algorithms(to appear), e-preprint arXiv:1604.08305.

[2] B.D. McKay. Subgraphs of dense random graphs with specified degrees. Combinatorics, Probability
and Computing, 20:413–433, 2011.



Richard Rado Lecture

Friday 11.15 Main Auditorium

Ramsey-Type Problems in Permutations

Vı́t Jeĺınek

jelinek@iuuk.mff.cuni.cz

Computer Science Institute, Charles University in Prague

MSC2000: 05C05, 05D10

In my talk, I will survey several Ramsey-theoretic notions related to the combinatorics
of permutations. I will focus on two main areas.

First, I will talk about the structural Ramsey properties of hereditary classes of permu-
tations. I will introduce several structural properties of hereditary permutation classes
that are inspired by Ramsey theory, and I will explain the relationships between them. I
will then show how some of these structural properties can be helpful when dealing with
enumeration problems on permutation classes.

In the second part of my talk, I will look at more quantitative questions; specifically, I will
survey the known estimates for the Ramsey numbers of permutation matrices, and the
closely related results on Ramsey numbers of sparse matrices and sparse ordered graphs.



Thursday 3.55 Auditorium C

Ramsey Problems for Odd Cycles

J. Robert Johnson

r.johnson@qmul.ac.uk

Queen Mary, University of London

(This talk is based on joint work with A. Nicholas Day.)

MSC2000: 05D10

It is easy to see that every k-colouring of the edges of the complete graph on 2k + 1
vertices contains a monochromatic odd cycle. Erdős and Graham asked what can be said
about the shortest monochromatic odd cycle which is guaranteed in such a colouring.
We show that this is unbounded in the sense that for any positive integer r there exists
an integer k and a k-colouring of K2k+1 with no monochromatic odd cycle of length less
than r.

We use these colourings to give new lower bounds on the k-colour Ramsey number of the
odd cycle, disproving a conjecture of Bondy and Erdős.



Monday 2.10 Auditorium A

(1,1,2,3)-Colourings of Subcubic Graphs

Prof E. Jonck

Betsie.Jonck@wits.ac.za

University of the Witswatersrand

(This talk is based on joint work with Prof P. Dankelmann, Mr R.J. Maartens
and Mr O. Nkuna.)

MSC2000: 05C10

For 1 ≤ i ≤ k, let S = (x1, x2, ..., xk) be a non-decreasing sequence of integers such that
xi ∈ Z+. An S-packing colouring of a graph G is a function ρ : V (G) 7−→ {x1, x2, ..., xk}
such that for any two vertices u, v ∈ V (G), ρ(u) = ρ(v) = xi if and only if the distance
between u and v is greater than xi. [1] asked whether it is true that any subcubic graph
except the Petersen graph is (1,1,2,3)-colourable. In this paper we show using initially
a similar approach as in [2] that every subcubic graph containing no Petersen graph as
its component, is (1,1,2,3)-colourable. Since a (1,1,2,2)-colouring of a graph G does not
neccesarly imply that G is also (1,1,2,3)-colourable (note that the converse is true), we
remark that by proving every subcubic graph is (1,1,2,3)-colourable (with an exception
of the Petersen graph), we have a stronger result of Theorem 3.2(If a graph G is a
generalized prism of a cycle, then G is (1, 1, 2, 2)-colourable if and only if G is not the
Petersen graph.) in [3].

[1] N. Gastineau and O. Togni. S-packing colorings of cubic graphs. Discrete Mathematics, 339:2461–
2470, 2016.

[2] M. Jakovac and S. Klavžar. The b-chromatic number of cubic graphs. Graphs and Combinatorics.,
26:107–118, 2010.

[3] B. Brešar, S. Klavžar, D.F Rall and K. Wash. Packing chromatic number,[FORMULA]-colorings,
and characterizing the Petersen graph. Aequationes mathematicae., 91:169–184, 2017.
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Forbidden vector-valued intersections

Peter Keevash

keevash@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Eoin Long.)

MSC2000: 05D05

We solve a generalised form of a conjecture of Kalai motivated by attempts to improve the
bounds for Borsuk’s problem. The conjecture can be roughly understood as asking for an
analogue of the Frankl-Rödl forbidden intersection theorem in which set intersections are
vector-valued. We discover that the vector world is richer in surprising ways: in particular,
Kalai’s conjecture is false, but we prove a corrected statement that is essentially best
possible, and applies to a considerably more general setting. Our methods include the use
of maximum entropy measures, VC-dimension, Dependent Random Choice and a new
correlation inequality for product measures.



Wednesday 10.30 Level 1 Auditorium

Counting Generalised Dyck Paths

Anum Khalid

anum.khalid@qmul.ac.uk

Queen Mary University of London

(This talk is based on joint work with Thomas Prellberg.)

MSC2000: 05Axx, 05Exx

In this work, we establish a general relationship between the enumeration of generalised
Dyck paths and skew Schur functions, extending work by Bousquet-Mélou [1].

Generalised Dyck paths are directed lattice paths which can take steps out of a finite set
of heights. We restrict these paths to be in a strip of height w and specify start-height
u and end-height v. We further associate weights pi to steps of height i, and denote the
maximal height of an up-step and down-step by α and β, respectively.

Theorem 1. The generating function Gw,α,β
(u,v) (t) of generalised Dyck paths is given by

Gw,α,β
(u,v) (t) =

S(1α,0β)(z̄)

S(w+1α,0β)(z̄)
S(wα,u,0β−1)/(v,0α+β−1)(z̄) ,

where Sλ/µ(z) is a skew Schur function, and z̄ are the α + β roots of the Kernel

K(t, z) = 1 − t
α∑

i=−β

piz
i .

Note that this result separates the overall geometry of the problem from the detailed
weights of the steps; the skew Schur functions are indexed by partitions depending on u,
v, w, α and β, whereas the step weights only enter via the specification of the Kernel
roots.

[1] M. Bousquet-Mélou, “Discrete Excursions.,” Séminaire Lotharingien de Combinatoire [electronic
only], vol. 57, pp. B57d, 23 p., electronic only–B57d, 23 p., electronic only, 2006.



Thursday 4.45 Level 1 Auditorium

Shortest Path in Inner Dualist of Hexagonal
Graph

Khawaja M Fahd1

muhammad.fahd@riphah.edu.pk

Riphah Institute of Computing and Applied Sciences, Riphah International University,
Township Lahore, Pakistan

(This talk is based on joint work with Faqir M Bhatti3.)

MSC2000: 05C85

A hexagonal graph is a graph created by joining different hexagonal blocks. This hexago-
nal graph is a planar graph. Its inner dual is defined by drawing a vertex for each hexagon.
Vertices corresponding to adjacent hexagons in the original graph are connected through
an edge in the inner dual. These edges make either an angle of π, π/3 or 2π/3 radians in
this particular setting.

The standard (0, 1) matrix do not preserve the information about the angle of any edge
in the inner dual. There are several methods to save this information and we use the
He-Matrix. He-Matrix is an extension of adjacency matrix, where an entry of 0 means
that the corresponding vertices are not connected directly by an edge. If there is an edge
between two vertices then the entry in the matrix can be 1, 2 or 3 if the edge lie at an
angle of π, π/3 or 2π/3 radians respectively.

If the graph is rotated and reflected then there can be at most 6 non-isomorphic He-
matrix of the graph. Each of them will correspond to a different orientation of the graph.
In this talk we present some results about the shortest paths between two vertices based
on He-Matrix. We discuss the combinatorial results on the number of shortest paths be-
tween any two given vertices in the inner dualist graph. We also present a linear time
algorithm that solves the shortest path problem in this setting. Moreover, we find the
orientation containing the smallest of all shortest path among all orientations.

1Khawaja M Fahd is a PhD Candidate
3Faqir M Bhatti is director of Riphah Institute of Computing and Applied Sciences, Riphah Interna-

tional University, Lahore



Monday 10.30 Level 1 Auditorium

Characterizing excluded minor classes using the
Strong Splitter Theorem

Sandra Kingan

skingan@brooklyn.cuny.edu

Brooklyn College, CUNY

MSC2000: 05B35

The Splitter Theorem states that, if N is a 3-connected proper minor of a 3-connected
matroid M such that, if N is a wheel or whirl then M has no larger wheel or whirl,
respectively, then there exists a sequence M0, . . . ,Mt of 3-connected matroids with M0

∼=
N , Mt = M , and for i ∈ {1, ...t}, Mi is a single-element extension or coextension of
Mi−1 [3]. The Strong Splitter Theorem optimizes the Splitter Theorem to best possible
by showing that we can obtain up to isomorphism M starting with N and at each step
performing a single-element extension or coextension, such that at most two consecutive
single-element extensions occur in the sequence (unless the rank of the matroids involved
is r(M)) [2]. The Strong Splitter Theorem is joint work with Manoel Lemos. In this talk
I will describe how to use the Strong Splitter Theorem to characterize an excluded minor
class of binary matroids [1].

[1] S. R. Kingan (submitted) On P ∗
9 -free matroids.

[2] S. R. Kingan and M. Lemos (2014) Strong Splitter Theorem, Annals of Combinatorics, Vol. 18-1,
111 - 116.

[3] P. D. Seymour (1980) Decomposition of regular matroids, J. Combin. Theory Ser. B 28, 305 - 359.



Monday 1.45 Conference Room 6

Crown graphs and their representation numbers

Sergey Kitaev

sergey.kitaev@cis.strath.ac.uk

University of Strathclyde

(This talk is based on joint work with Marc Glen and Artem Pyatkin.)

MSC2000: 05C62

Letters x and y alternate in a word w if after deleting in w all letters but the copies of x
and y we either obtain a word xyxy · · · (of even or odd length) or a word yxyx · · · (of
even or odd length). A graph G = (V,E) is word-representable if there exists a word w
over the alphabet V such that letters x and y alternate in w if and only if xy is an edge in
E. It is known [3] that any word-representable graph G is k-word-representable for some
k, that is, there exists a word w representing G such that each letter occurs exactly k
times in w. The minimum such k is called G’s representation number.

A crown graph (also known as a cocktail party graph) Hn,n is a graph obtained from
the complete bipartite graph Kn,n by removing a perfect matching. In this talk, I will
discuss the results in [1], the main one of which is that for n ≥ 5, Hn,n’s representation
number is dn/2e. This result not only solves the open Problem 7.4.2 in [2], but also gives
a negative answer to the question raised in Problem 7.2.7 in [2] on 3-word-representability
of bipartite graphs. As a byproduct, [1] gives a new example of a graph class with a high
representation number.

[1] M. Glen, S. Kitaev, A. Pyatkin. On the representation number of a crown graph. arXiv:1609.00674

[2] S. Kitaev, V. Lozin. Words and graphs. Springer, 2015.

[3] S. Kitaev, A. Pyatkin. On representable graphs. J. Autom., Lang. and Combin. 13 (2008) 1, 45–54.



Thursday 2.35 Conference Room 6

Variations on parking functions

Nicholas Korpelainen

N.Korpelainen@derby.ac.uk

University of Derby

MSC2000: 05C30

A parking function is a sequence S := (a1, a2, . . . , an) of positive integers such that if
b1 ≤ b2 ≤ . . . ≤ bn is the increasing rearrangement of S, then bi ≤ i for all i. This cor-
responds to a queue of preferences of n cars entering a linear arrangement of n parking
spots, where each car parks in its preferred spot if free, or the next available spot, other-
wise (if any subsequent spots are available). Such a sequence is called a parking function
if every car is able to park successfully. The definition was first introduced by Konheim
and Weiss in 1966 [2]. H. Pollak gave an elegant ”moonwalking”-proof of the fact that
(n+ 1)n−1 (compare to Cayley’s formula) enumerates such functions [1]. Various authors
have since given explicit bijections from the set of parking functions to the set of labelled
(n + 1)-vertex trees [3].

We will talk about the current state of the art regarding generalisations of parking func-
tions (with more connections to graph theory), and we propose some variations.

[1] D. Foata and J. Riordan. Mappings of acyclic and parking functions. Aequationes Mathématique,
10:1022, 1974.

[2] A. G. Konheim and B. Weiss. An occupancy discipline and applications. SIAM Journal on Applied
Mathematics, 14(6):12661274, 1966.

[3] G. Kreweras. Une famille de polynômes ayant plusieurs propriétés énumeratives. Period. Math. Hun-
gar., 11(4):309320, 1980.
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Uniqueness of optimal configurations in extremal
combinatorics

Daniel Král’

d.kral@warwick.ac.uk

University of Warwick

(This talk is based on joint work with Andrzej Grzesik and László Miklós Lovász.)

MSC2000: 05C35

We study the uniqueness of optimal configurations in extremal combinatorics. An empir-
ical experience suggests that optimal solutions to extremal graph theory problems can
be made asymptotically unique by introducing additional constraints. Using tools from
the theory of graph limits, we will show that this phenomenon is not true in general.
In particular, we will present a counterexample to the following conjecture of Lovász,
which is often referred to as saying that “every extremal graph theory problem has a
finitely forcible optimum”: every finite feasible set of subgraph density constraints can
be extended further by a finite set of density constraints such that the resulting set is
satisfied by an asymptotically unique graph.



Monday 5.35 Auditorium C

Violator spaces vs closure spaces

Vadim E. Levit

levitv@ariel.ac.il

Ariel University, Israel

(This talk is based on joint work with Yulia Kempner.)

MSC2000: 05B35

The main goal of this talk is to make connections between two well-known, but, up to
now, independently developed theories: the theory of violator spaces and the theory of
closure spaces.

LP-type problems have been introduced and analyzed by Matoušek, Sharir and Welzl as
a combinatorial framework that encompasses linear programming and other geometric
optimization problems. Further, Matoušek et al. [1] defined a more general framework:
violator spaces, which constituted a proper generalization of LP-type problems. Origi-
nally, violator spaces were defined for the set of constraints H, where with each subset of
constraints G ⊆ H associates V (G) - the set of all constraints violating G. For instance,
a violator space is naturally revealed, when one computes the smallest enclosing ball of
a finite set of points in Rd. Here the set H is a set of points in Rd, and the violated con-
straints of some subset of the points G are exactly the points lying outside the smallest
enclosing ball of G.

Convex geometries were invented by Edelman and Jamison [2] as proper combinatorial
abstractions of convexity. There are various ways to characterize finite convex geometries.
One of them defines convex sets by an anti-exchange closure operator. The convex hull
operator on Euclidean space En is a classic example of a closure operator with the anti-
exchange property.

In this work, we investigate interrelations between violator spaces and closure spaces and
show that a violator mapping may be defined by a weakened version of a closure operator.
Interrelations between violator spaces and closure spaces gives new insights on a number
of well known findings. For example, we prove that violator spaces with a unique basis
satisfy both the anti-exchange and the Krein-Milman properties.

Finally, based on subsequent relaxations of the closure operator notion we introduce a
notion of a convex space as a generalization of a violator space.

[1] Gärtner, J. Matoušek, L. Rüst, P. Škovroň. Violator spaces: structure and algorithms. Discrete Appl.
Math., 156 (11): 2124 – 2141, 2008.

[2] P.H. Edelman and R.E. Jamison. The theory of convex geometries, Geom. Dedicata, 19, 247-270,
1985.



Monday 2.10 Level 1 Auditorium

Inverse of the Pak-Stanley bijection for k-Shi
arrangement

Svante Linusson

linusson@kth.se

KTH, Stockholm, Sweden

(This talk is based on joint work with Stefan Heuer.)

MSC2000: 05A15

For positive integers k, n, the n-dimensional k-Shi arrangement consists of all hyperplanes
of the form

xi − xj = −k + 1,−k + 2, . . . ,−1,+, 1, . . . , k − 1, k for all 1 ≤ i < j ≤ n.

When k = 1 it is called the Shi arrangement. The number of regions of the k-Shi arrange-
ment is (kn + 1)n−1.

A k-parking function of length n is a sequence of positive integers x = (x1, . . . , xn) ∈ Zn
>0

that is component-wise less than or equal to some permutation of (b1, . . . , bn) where
bi = 1 + k(i − 1) (see [3]). The 1-parking functions are the ordinary parking functions.
For example (9, 7, 1, 2) is a 3-parking function of length 4, but not a 2-parking function.

Pak and Stanley defined a natural bijection from the regions of the k-Shi arrangement
to k-parking functions of length n, see [3]. The map carried important statistics and was
clearly injective, but had the drawback that they could not formulate an explicit inverse.
Their proof of bijectivity used the fact that the sets were known to be equinumerous. In
a recent paper [1] Beck et al. defines an explicit inverse for the case of k = 1.

We have defined an explicit inverse to the Pak and Stanley map for general k, that is,
a map from k-parking functions to regions of the k-Shi arrangement. Our map goes via
objects called k-parking graphs, a generalisation of the parking graphs considered by Beck
et al. Detailed proofs can be found in the thesis of Stefan Heuer [2].

[1] Matthias Beck, Ana Berrizbeitia, Michael Dairyko, Claudia Rodriguez, Amanda Ruiz and Schuyler
Veeneman, ”Parking functions, Shi Arrangements, and Mixed Graph”, The American Mathematical
Monthly vol 122, no 7 (2015), pp. 660?673.

[2] Stefan Heuer, ”Bijections between k-Shi arrangement, k-parking functions and k- parking graphs”,
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173800, master thesis. KTH, Sweden.

[3] Rickard P. Stanley, ”Hyperplane arrangements, parking functions and tree inversions”, In: Mathe-
matical Essays in Honor of Gian-Carlo Rota. Ed. by B. E. Sagan and R. P. Stanley. Vol. 161. Progress
in Mathematics. Birkhäuser Boston, 1998, pp. 2620 – 2625.



Thursday 3.30 Auditorium B

Designs beyond quasirandomness

Allan Lo

s.a.lo@bham.ac.uk

University of Birmingham

(This talk is based on joint work with Stefan Glock, Daniela Kühn and Deryk Osthus.)

MSC2000: 05C70, 05C65, 05B40

The Existence conjecture for combinatorial designs states that every large complete k-
graph can be edge-decomposed into small cliques (subject to the obvious divisibility
condition). This conjecture was proved by a recent breakthrough of Keevash. We gave a
new proof of this result, based on the method of iterative absorption. In fact, ‘regularity
boosting’ allows us to extend our main decomposition result beyond the quasirandom
setting and thus to generalise the results of Keevash. In particular, we obtain a resilience
version and a minimum degree version. In this talk, we will present our new results within
a brief outline of the history of the Existence conjecture and provide an overview of the
proof.



Tuesday 4.40 Auditorium A

Tournament Quasirandomness from counting

Eoin Long

long@maths.ox.ac.uk

University of Oxford

(This talk is based on joint work with Asaf Shapira and Benny Sudakov.)

MSC2000: 05C35

A theorem of Chung and Graham states that if h ≥ 4 then a tournament T is quasirandom
if and only if T contains each h-vertex tournament the ‘correct number’ of times as a
subtournament. Here we investigate the relationship between quasirandomness of T and
the count of a single h-vertex tournament H in T . We show that if T has the correct
global count of H and h ≥ 7 then quasirandomness of T is only forced if H is transitive.
However if T furthermore has the correct local count of H in all large subsets of the
vertex set of T then one can sometimes say more. We prove that although this stronger
property does not imply quasirandomness of T for many tournaments H, it does suffice
for an infinite collection.



Tuesday 10.30 Level 1 Auditorium

Characterizing path-like trees from linear
configurations

Susana-Clara López

susana.clara.lopez@upc.edu

Universitat Politècnica de Catalunya

(This talk is based on joint work with Francesc-Antoni Muntaner-Batle.)

MSC2000: Primary 05C05, 05C75, Secondary 05C70 and 05C78

Assume that we embed the path Pn as a subgraph of a 2-dimensional grid, namely, Pk×Pl.
Given such an embedding, we consider the ordered set of subpaths L1, L2, . . . , Lm which
are maximal straight segments in the embedding, and such that the end of Li is the
beginning of Li+1. Suppose that Li

∼= P2, for some i and that some vertex u of Li−1 is
at distance 1 in the grid to a vertex v of Li+1. An elementary transformation of the path
consists in replacing the edge of Li by a new edge uv. A tree T of order n is said to be a
path-like tree, when it can be obtained from some embedding of Pn in the 2-dimensional
grid, by a sequence of elementary transformations. Thus, the maximum degree of a path-
like tree is at most 4.

Intuitively speaking, a tree admits a linear configuration if it can be described by a
sequence of paths in such a way that only vertices from two consecutive paths, which are
at the same distance of the end vertices are adjacent. In this work, we characterize path-
like trees of maximum degree 3, with an even number of vertices of degree 3, from linear
configurations. We also show that the characterization of path-like trees of maximum
degree 4 can be reduced to the characterization of path-like tree of maximum degree 3.

[1] S.C. López, F. A. Muntaner-Batle, Characterizing path-like trees from linear configurations,
arXiv:1705.08802 [math.CO].
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The celebrated Berge-Fulkerson conjecture suggests that every bridgeless cubic graph can
have its edges covered with at most five perfect matchings. Since three perfect matchings
suffice if and only if the graph in question is 3-edge-colourable, uncolourable cubic graphs
fall into two classes: those that can be covered with four perfect matchings, and those that
require at least five. Cubic graphs that cannot be covered with four perfect matchings are
extremely rare. Among the 64326024 snarks (uncolourable cyclically 4-edge-connected
cubic graphs with girth at least five) on up to 36 vertices there are only two graphs
that cannot be covered with four perfect matchings – the Petersen graph and a snark of
order 34.

In this talk we show that coverings with four perfect matchings can be described with
the help of nowhere-zero flows whose values lie in the configuration of six lines spanned
by four points of the 3-dimensional projective geometry PG(3, 2) in general position.
This characterisation provides a convenient tool for investigation of graphs that do not
admit such a cover and enables a great variety of constructions of snarks that cannot be
covered with four perfect matchings. In particular, with the combined forces of several
constructions we can prove that for each even integer n ≥ 44 there exists at least one
snark of order n that has no cover with four perfect matchings.



Thursday 4.45 Auditorium A
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Extremal Set Theory is a branch of Extremal Combinatorics where one characterises the
maximum size of families of sets with given restrictions placed on them. The Erdős-Ko-
Rado Theorem is a classical result in Extremal Set Theory that has, since its discovery,
been extensively researched and generalised.

In this talk, I will present an introduction of the Erdős-Ko-Rado Theorem and some of
its generalisations. I also will present some of my own results which relate to a partic-
ular generalisation of this theorem. Open problems as well as new possible directions of
research are also given.
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We introduce a two-player nonlocal game, called the (G,H)-isomorphism game, where
classical players can win with certainty if and only if the graphs G and H are isomor-
phic. We then define the notions of quantum and non-signalling isomorphism, by con-
sidering perfect quantum and non-signalling strategies for the (G,H)-isomorphism game,
respectively. In the quantum case, we consider both the tensor product and commuting
frameworks for nonlocal games. We prove that non-signalling isomorphism coincides with
the well-studied notion of fractional isomorphism, thus giving the latter an operational
interpretation. Second, we show that, in the tensor product framework, quantum iso-
morphism is equivalent to the feasibility of two polynomial systems in non-commuting
variables, obtained by relaxing the standard integer programming formulations for graph
isomorphism to Hermitian variables. On the basis of this correspondence, we show that
quantum isomorphic graphs are necessarily cospectral. Finally, we provide a construction
for reducing linear binary constraint system games to isomorphism games. This allows
us to produce quantum isomorphic graphs that are nevertheless not isomorphic. Further-
more, it allows us to show that our two notions of quantum isomorphism, from the tensor
product and commuting frameworks, are in fact distinct relations, and that the latter is
undecidable. Our construction is related to the FGLSS reduction from inapproximability
literature, as well as the CFI construction. The techniques used are an interesting mix of
combinatorics, optimization, and quantum information.

This talk will be based on arXiv:1611.09837.
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A paper by Cavenagh and Wanless diagnosed the possible intersection of any two transver-
sals of Bn. We give a generalization of this problem for the intersection of µ transversals,
and provide constructions and computational results for the cases where µ = 3, 4. This
result is then applied to the problem of finding µ-way k-homogeneous Latin trades, and
along with a few new constructions, completes the spectrum of the existence 3-way k-
homogeneous Latin trades for all but a small list of exceptions.
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A Condorcet domain is a set of linear orders which give rise to a transitive set of pref-
erences when used as rankings in majority voting. Alternatively they can be seen a a
set of permutations such that any three permutations do not induce a certain forbidden
pattern. In this talk I’ll give some background on Condorcet domains and describe some
results from a project together with Søren Riis and Charles Leedham-Green. I will also
relate these results to a more general type of Turán type problem for permutations, which
also includes the classical theory of pattern avoiding permutations.
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In this talk we’ll look at the class of simple graphs G∗ for which every pair of distinct
odd cycles intersect in at most one edge. We’ll give a structural characterization of these
graphs, and prove that they satisfy the list-edge-colouring conjecture. We will also talk
about a stronger result concerning kernel-perfect orientations in line graphs.
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A central topic in the study of complex networks is the comparison of the amount of clus-
tering or community structure between different networks, and one of the most popular
ways to quantify the amount of clustering in a network is through its modularity. Given
a graph G = (V,E) where |V | = n and |E| = n, the maximum modularity of G is defined
to be the maximum, taken over all partitions A of V , of

qA(G) =
1

m

∑
A∈A

e(A)− 1

4m2

∑
A∈A

(∑
v∈A

d(v)

)2

.

While a range of heuristics are used in practice to estimate this quantity, it is notori-
ously hard to compute exactly: in fact it is even NP-hard to approximate the maximum
modularity within any constant factor.

In this talk I will present some initial results concerning the parameterised complexity
of this problem, with respect to some standard structural parameters. On the positive
side, we show that the problem belongs to FPT when parameterised by the size of a
minimum vertex cover for the input graph. However, although the problem can be solved
in polynomial time on graphs whose treewidth is bounded by a fixed constant, we provide
evidence that the problem is unlikely to be in FPT with respect to this parameterisation.
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Recently, Suntornpoch and Meemark [8] studied the Cayley graphs over finite chain rings
as a generalisation of integral circulant graphs and GCD-graphs with prime power order
presented in [4, 5, 7]. They computed its eigenvalues and showed that this Cayley graph is
an integral circulant graph. In this talk, we consider the problem on existence of perfect
state transfer in these graphs. For some integral circulant graphs, the problem of the
existence of perfect state transfer is known, e.g., [1, 2, 3, 6]. Bašić et al. [1] showed that
integral circulant graphs having no perfect state transfer if the set of divisor contain only
odd divisors. They also gave the simple condition for characterizing integral circulant
graphs allowing perfect state transfer in terms of its eigenvalues. As we know that the
Cayley graphs over finite chain rings are indeed integral circulant and we know their
eigenvalues, we can apply Bašić’s tool on the eigenvalues to determine the existence of
perfect state transfer in these graphs.

[1] M. Bašić, M.D. Petković and D. Stevanović. Perfect state transfer in integral circulant graphs Appl.
Math. Lett., 22:1117–1121, 2009.

[2] M. Bašić and M.D. Petković. Some classes of integral circulant graphs either allowing or not allowing
perfect state transfer. Appl. Math. Lett., 22:1609–1615, 2009.

[3] M. Bašić and M.D. Petković. Perfect state transfer in integral circulant graphs of non-square-free
order. Linear Algebra Appl., 433:149–163, 2010.

[4] W. Klotz and T. Sander. Some properties of unitary Cayley graph. Electron. J. Combin., 14:R45 12
pages, 2007.

[5] W. Klotz and T. Sander. GCD-graphs and NEPS of complete graphs. Ars Math. Contemp., 6:289–
299, 2013.

[6] M.D. Petković and M. Bašić. Further results on the perfect state transfer in integral circulant graphs.
Comput. Math. Appl., 61:300–312, 2011.

[7] J.W. Sander and T. Sander. The energy of integral circulant graphs with prime power order. Appl.
Anal. Discrete Math., 5:22–36, 2011.

[8] B. Suntornpoch and Y. Meemark. Cayley graphs over a finite chain ring and gcd-graphs. Bull. Aust.
Math. Soc., 93:353–363, 2016.
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A non-empty set of monomials M is a multicomplex if, for a monomial m in M and a
monomial m′ such that m′|m, we have that m′ also belongs to M . A multicomplex M
is called pure if all its maximal elements are of the same degree. This notion is clearly
a generalization of the simplicial complex, and several invariants extend directly, as the
f -vector of a multicomplex, which is the vector that lists the monomials grouped by
degrees.

The combinatorial relevance of multicomplexes is partly due to a 1977 Richard Stanley
conjecture that says that the h-vector of a matroide is the f -vector of a pure multicomplex.
This has been proved for several families of matroids. In [1], the conjecture is proved for
paving matroids.

Let R be the ring k[X0, ..., Xn−1], where k is a field, and let us consider the set Gd,n of
monomials in R of degree d and coefficient 1. We can give to Gd,n the structure of a graph
as follows : Two monomials m and m′ are adjacent if there are different integers i and j
such that Xim = Xjm

′.

In this talk, we will consider two conjectures about certain invariants of these graphs
related to pure pure multicomplexes and some algebraic properties of R. These conjectures
appear in [1] and the invariants in [2].

[1] C. Merino, S. Noble, M. Ramı́rez and R. Villarroel. On the structure of the h-vector of a paving
matroid. European Journal of Combinatorics 33:1787–1799, 2012.

[2] A.V. Geramita, D. Gregory, and L. Roberts. Monomial ideals and points in projective space. Journal
of Pure and Applied Algebra, 40:33–62, 1986.
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Given a positive integer n, we denote a set partition of In := {1, 2, . . . , n} into k nonempty
parts by P = B1/B2/ · · · /Bk ∈ Πn,k, where min(B1) < min(B2) < · · · < min(Bk). For

example, P = 147/238/56 ∈ Π8,3. It is well known that
{

n
k

}
= |Πn,k| is the Stirling

number of the second kind, which for 0 ≤ k ≤ n satisfies the recursion{
n+ 1
k

}
=

{
n

k − 1

}
+ k

{
n
k

}
,

wth initial conditions
{

0
0

}
= 1 and

{
n
k

}
= 0 if n, k < 0 or n < k. Over the past few

decades, various generalizations of
{

n
k

}
have appeared in the literature, and the aim

of this talk is to give alternative ways of partitioning In, along with their combinatorial
connections to other objects.

For instance, we say j is a fixed point of a partition P = B1/B2/ · · · /Bk of In if j ∈ Bj,
and we define Sfix(n, r) to be the number of partitions of In with exactly r fixed points.
Then Sfix(n, r) corresponds in a natural way to counting Broder’s [1] partitions of In
into k parts such that 1, 2, . . . , r are in distinct parts, known as r-Stirling numbers of

the second kind,
{

n
k

}
r
. Another generalization is Smin(n, i), defined to be the number

of partitions of In such that i is a minimal element of some block B`. The Smin(n, i)
correspond to many combinatorial objects, including the 132-avoiding indecomposable
permutations studied by Gao, Kitaev, and Zhang [2].

[1] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241–259

[2] A. L. L. Gao, S. Kitaev, and P. B. Zhang, On pattern avoiding indecomposable permutations, (2016),
preprint.
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Arguably, the most important and best studied graph polynomial is the Tutte polynomial.
It is important not only because it encodes a large amount of combinatorial information
about a graph, but also because of its applications to areas such as statistical physics and
knot theory. Because of its importance the Tutte polynomial has been extended to various
other classes of combinatorial object. For some objects there is more than one definition
of a “Tutte polynomial”. For example, there are three different definitions for the Tutte
polynomial of graphs in surfaces: M. Las Vergnas’ 1978 polynomial, B. Bollobás and O.
Riordan’s 2002 ribbon graph polynomial, and V. Kruskal’s polynomial from 2011. On the
other hand, for some objects, such as digraphs, there is no wholly satisfactory definition
of a Tutte polynomial. Why is this? Why are there three different Tutte polynomials of
graphs in surfaces? Which can claim to be the Tutte polynomial of a graph in a surface?
More generally, what does it mean to be the Tutte polynomial of a class of combinatorial
objects? In this talk I will describe a way to canonically construct Tutte polynomials of
combinatorial objects, and, using this framework, will offer answers to these questions.
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Cellular automata are interacting particle systems whose update rules are homogeneous
and local. Since their introduction by von Neumann almost 50 years ago, many particular
such systems have been investigated, but no general theory has been developed for their
study, and for many simple examples surprisingly little is known. Understanding the rules
that govern their typical global behaviour is an important and challenging problem in
statistical physics, probability theory and combinatorics.

In this talk we will discuss some dramatic recent developments in our understanding of a
particular (large) family of monotone cellular automata – those which can naturally be
embedded in d-dimensional space – with random initial conditions. This family was first
studied by Bollobás, Smith and Uzzell, and is a substantial generalization of bootstrap
percolation, which corresponds to the case in which a site updates (from inactive to
active) if at least r of its neighbours are already active. We will also discuss some very
recent applications to so-called ‘kinetically constrained spin models’.
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In graph theory some of the most important objects are spanning trees and forests. For
usual graphs there are a lot of famous enumeration results of trees. In this work we
focus on Tutte polynomials and graphical matroids, which ”enumerate” spanning trees
and forests. We will discuss the generalization of spanning trees and forests for the case
of hypergraphs. Then we will introduce the concept of hypergraphical matroid for an
arbitrary hypergraph. Our definition of trees looks similar to the definition given in [1].
However our definition allows to associate a matroid to a hypergraph, when the definition
given in [1] allows to associate a polymatroid (they are not necessarily matroids).

For a hypergraph H = (V,E), a subset of edges C ⊂ E is called a cycle if |C| = | ∪e∈C e|
and there is no subset C ′ ( C, such that the first property holds for C ′. Of course,
it gives the definition of forests and also of trees (forests of size |V | − 1). Define the
hypergraphical matroid of H as the matroid with the ground set E and with cycles as
minimal dependents.

This definition gives the matroid, so we have all matroid properties of forests, for exam-
ple: maximal forests have the same cardinality; the Tutte polynomial, which enumerates
trees and forests. Furthermore, I will present another definition of a hypergraphical ma-
troid, which is equivalent to the first and which obviously gives a vector matroid. The
second definition is motivated by Postnikov-Shapiro algebras (power algebras associated
to graphs, see [3]), which is in one to one correspondence with graphical matroids, see [2].

[1] T. Kálmán. A version of Tutte’s polynomial for hypergraphs. Advances in Mathematics 244:823–873,
2013.

[2] G. Nenashev. Postnikov-Shapiro Algebras, Graphical Matroids and their generalizations.
arXiv :1509.08736.

[3] A. Postnikov and B. Shapiro. Trees, parking functions, syzygies, and deformations of monomial ideals.
Trans. Amer. Math. Soc. 356:3109–3142, 2014.
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An r× c triple array on v symbols is an array in which each symbol occurs equally often,
with no repeats in rows or columns, and the number of symbols common to two rows,
two columns, or a row and a column are (possibly different) constants.

Agrawal [1] suggested a method for constructing triple arrays from symmetric 2-designs,
giving rise to what is called Agrawal’s conjecture

Conjecture 1. If there is a symmetric 2-(v + 1, r, λ) design with r − λ > 2, then there
is an r × c triple array on v symbols with v = r + c− 1.

The converse of this conjecture was proven in [2] and many examples have been con-
structed. But, until now only one infinite family, called Paley triple arrays, has been
proven to exist. This has been done to different degrees by various authors over the years,
but to the full extent in [4], and can be summarized as follows.

Theorem 2. Let q ≥ 5 be an odd prime power. Then there exists a q × (q + 1) triple
array.

In this talk, we introduce a new infinite family of triple arrays. The construction is based
on the use of difference sets in abelian groups which admit −1 (the inverse mapping
x 7→ x−1) as a so-called multiplier, and this property turn out to be both necessary and
sufficient.

For difference sets in non-abelian groups, −1 can only be a weak multiplier, and this is
not sufficient. We have not found any examples of difference sets in non-abelian groups
that give triple arrays by this construction.

[1] H. Agrawal. Some methods of construction of designs for two-way elimination of heterogeneity. J.
Amer. Statist. Assoc., 61: 1153–1171, 1966.

[2] J. P. McSorley, N. C. K. Phillips, W. D. Wallis and J. L. Yucas. Double Arrays, Triple Arrays and
Balanced Grids. Designs, Codes and Cryptography, 35: 21–45, 2005.

[3] T. Nilson and P. J. Cameron. Triple arrays from difference sets. To appear.

[4] D. A. Preece, W. D. Wallis and J. L. Yucas. Paley triple arrays. Australas. J. Combin., 33: 237–246,
2005.
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Alternating Sign Matrices (ASMs) are fas-
cinating combinatorial objects with connec-
tions to many different areas of science.
Associated to any ASM is its Alternating
Signed Bipartite Graph, and these have been
the main focus of our research. One partic-
ular question of interest asks which balanced
2-edge-coloured bipartite graphs admit real-
isations as alternating sign matrices.

An Alternating Sign Matrix, or ASM, is an
n× n matrix that contains only the num-
bers 0, 1, and −1, subject to the following
constraints:

• The sum of each row and column must
be 1

• The non-zero entries in each row must
alternate between 1 and −1

• The non-zero entries in each column
must alternate between 1 and −1

Associated to each ASM is its Alternating
Signed Bipartite Graph. This graph has a
vertex for each row and column of the ma-
trix, and the vertices belonging to Row i
and Column j are adjacent if the (i, j) en-
try of the matrix is non-zero. Edges are

coloured with two colours according as they
represent positive (blue) or negative (red)
matrix entries.

Here are all of the 3× 3 ASMs,
and their corresponding ASBGs:
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Here are all of the 3× 3 ASMs,
and their corresponding ASBGs:

Some basic criteria that the graph must
meet in order to be isomorphic to an ASBG
are:

• The graph must be bipartite.

• This bipartition must be “balanced”.
In other words, there must be the
same number of vertices in each part
of the bipartition.

These criteria alone, however, are not
enough to guarantee that a given graph is
an ASBG. What we would like is a set of
criteria that a given graph can either pass
or fail, in order to determine if they are iso-
morphic to an ASBG. This talk will present
partial characteristics of ASBGs.

[1] R. Brualdi, K. Kiernan, S. Meyer, M. Schroeder. Patterns of Alternating Sign Matrices. Linear
Algebra and its Applications,2013.
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A simple undirected graph G has the Friendship property if every pair of distinct ver-
tices in G have exactly one mutual neighbour. The Erdős-Rényi-Sós theorem, commonly
referred to as the Friendship Theorem, establishes that the only finite graphs with the
Friendship property are the windmill graphs.

We will discuss a relaxation of the friendship property, namely the minimal exponent
2 (me2) property. An me2-graph is a simple undirected graph of exponent 2 in which
the deletion of any edge would result in a graph not having exponent 2. If u and v are
adjacent vertices in an me2-graph G, then either u is the unique common neighbour in G
of v and another vertex w, or v is the unique common neighbour in G of u and another
vertex w′. If both of these properties hold for every pair of adjacent vertices in G, then
we say that G has the strong-me2 property. This talk will focus on the me2 and strong-
me2 properties and the relationship between them. In a strong-me2 graph of order n, the
maximum possible vertex degree is n− 1 if n is odd, and n− 4 if n is even. The examples
of odd order in which this maximum is attained are the windmills; a description of the
examples of even order will be presented.
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Reconfiguration problems arise when, given an instance of a combinatorics problem, we
want to transform step-by-step a solution into another one without losing the desired
property at any time. Each step is defined by an elementary operation. Three elementary
transformations, called reconfiguration rules, are usually considered. They are naturally
explained using tokens placed on the vertices that form the solution. In the token addition
and removal model (TAR), we can add or remove a token as long as the number of tokens
does not go beyond a given threshold. In the token jumping model (TJ), we can move a
token to any vertex of the graph. Finally, in the token sliding model (TS), we can slide a
token along an edge (i.e. we move the token to a neighbour of its current location). Note
that in the TJ and TS models, the size of a solution does not change under an elementary
operation.

Here, we are interested in reconfiguring dominating sets under token sliding. Given a graph
G = (V,E), a dominating set of G is a subset of vertices D ⊆ V such that the closed
neighbourhood of D (denoted NG[D]) satisfies NG[D] = V . We define the Dominating
Set Reconfiguration (DSR) problem as that of, given two dominating sets, deciding
whether they can be reconfigured into each other. To this day, many reconfiguration
results consider Colouring or Independent Set (see [2] for a survey) and there are
still few results in the context of dominating set reconfiguration. Haddadan et al. [1]
studied this problem under the TAR model. They proved that it is PSPACE-complete
even for planar graphs, bounded treewidth graphs or bipartite graphs. On the other hand,
they gave polynomial-time algorithms for interval graphs, trees and cographs.

We investigate the complexity of DSR under TS. We prove that this problem is PSPACE-
complete even for planar graphs, bounded treewidth graphs or split graphs, and provide
polynomial-time algorithms for interval graphs and dually chordal graphs.

[1] Arash Haddadan, Takehiro Ito, Amer E. Mouawad, Naomi Nishimura, Hirotaka Ono, Akira Suzuki,
and Youcef Tebbal. The Complexity of Dominating Set Reconfiguration, pages 398–409. Springer
International Publishing, Cham, 2015.

[2] Jan van den Heuvel. The complexity of change. CoRR, abs/1312.2816, 2013.
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Linear error-correcting codes with large automorphism groups are of interest from many
points of view. From the Coding Theory point of view, a large automorphism group can re-
duce the number of computations needed for encoding and decoding. In [1], MacWilliams
developed a method, called permutation decoding, that depends on the existence of a
particular set of automorphisms, called PD–set. A PD–set for a t–error correcting code C
is a set S consisting of automorphisms of the code such that every possible error vector
of weight at most t can be moved outside the information part by some element of S.

Let G = Aut(C) be the automorphism group of C. There are two practical problems:

(1) determine whether G contains a PD–set or not;

(2) if G contains a PD–set, then construct a PD-set of smallest possible size.

These problems were studied for very particular classes of codes and not much is known
for the general case. In particular, no efficient algorithm is known for either (1) or (2).
In this talk, we will consider several linear codes constructed in [2, 3] and illustrate some
possible computational approach to problems (1) and (2).

[1] F.J. MacWilliams. Permutation decoding of systematic codes, Bell System Tech. J., 43:485–505,
1964.

[2] N. Pace. New ternary linear codes from projectivity groups. Discrete Math., 331:22–26, 2014.

[3] N. Pace, and A. Sonnino. On linear codes admitting large automorphism groups. Des. Codes Cryp-
togr., 83:115–143, 2017.
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MSC2000: 94C30

An (n,m, k;λ)-strong external difference family (SEDF) is a set of m disjoint k-subsets
A1, . . . , Am of an additive group G of order n with the property that for each i from
1 to m we have that we have that each nonzero element of G occurs precisely λ times
as a difference of the form ai − aj with ai ∈ Ai and aj ∈ Aj for some j 6= i. Their
study is motivated by a connection with algebraic manipulation detection codes, which
have applications in cryptography and coding theory. In this talk we discuss counting
techniques that give nonexistence results for SEDFs for many choices of the parameters
n, m, k and λ.
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Following Godsil [1], a graph is (positively) invertible if it has a non-singular adjacency
matrix the inverse of which is diagonally similar to a non-negative integral matrix. This
inverse is then the adjacency matrix of a (multi)graph, called the inverse of the original
graph. Interest in inverse graphs is motivated by the fact that their spectra are reciprocal
to those of the original graphs; for other properties and applications we refer to [1,2,3].

In our talk we will focus on a negative counterpart of invertibility as introduced in [4].
Namely, we call a graph negatively invertible if it has a non-singular adjacency matrix the
inverse of which is diagonally similar to a non-positive integral matrix M . The negative
inverse graph is then the one with the adjacency matrix −M ; its spectrum is negatively
reciprocal to the spectrum of the original graph.

Although the two concepts are defined similarly, they lead to distinct sets of invertible
graphs. It also turns out that the family of negatively invertible graphs contains repre-
sentatives of structural models of important molecules and such graphs also appear in
other applications.

As a taster we present a census of positively and negatively invertible graphs on at
most 6 vertices with a unique perfect matching. Among out main results we propose a
construction of invertible graphs in either sense, based on ‘bridging’ two invertible graphs
over a subset of their vertices. We also analyze spectral properties of bridged graphs and
derive lower bounds for their least positive eigenvalues.

References:

[1] C. D. Godsil, Inverses of Trees, Combinatorica 5 (1985) 33–39.

[2] S. Pavĺıková and J. Krč-Jediný, On the inverse and dual index of a tree, Linear and
Multilinear Algebra, 28 (1990) 93–109.

[3] S. Pavĺıková, A note on inverses of labeled graphs, Australasian Journal on Combina-
torics, 67 (2017) 222–234.

[4] S. Pavĺıková and D. Ševčovič, On a Construction of Integrally Invertible Graphs and
their Spectral Properties, Linear Algebra and its Applications, submitted.
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Given a vertex-colored graph, a tropical subgraph is defined as a subgraph where each
color of the initial graph appears at least once. Applications of vertex-colored graphs
can be found a lot in bioinformatics and web graphs. In practice, some ongoing works
for tropical subgraphs problems are tropical dominating sets, tropical connected graphs,
tropical maximum matchings and most of them are NP-hard. In this work, we deal with
the problem of looking for tropical paths in a vertex-colored graph. It is well known that
the longest path problem is harder than the Hamiltonian path problem and a very limited
number of classes of graphs can be efficiently solved for the former. Note that our problem
of tropical paths is even harder than the longest path problem as we color each vertex
by a distinct color. Thus we try to focus on the classes of graphs which have been deeply
studied for the longest path problem, to apply for the tropical path problem. We show
that some graph classes which are easy for the longest path problem remains NP-hard for
our problem such as DAG, interval, cactus graphs, etc, especially our problem is still NP-
hard if allowing to visit each vertex more than once on paths in general graphs. Besides,
we find out classes of graphs which are solved in polynomial time for our problem and
we also propose some efficient algorithms. Finally, we also arise some open questions for
this hard problem.
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A λ-fold triple system of order v is a design consisting of a v-set V and a collection of
3-subsets (called blocks or triples) of V such that each 2-subset of V occurs in exactly λ
of the triples of the design. Given a λ-fold triple system with λ > 1, we can ask whether
its triples can be ordered so that the union of any two consecutive triples consists of
four elements of V ; when this is possible we have a 2-intersecting Gray code for the
design. We will describe some potential applications, give a review of previous existence
and non-existence results, and discuss some recent advances concerning the existence of
2-intersecting Gray codes for twofold triple systems.



Monday 4.20 Conference Room 6

On the sum of Laplacian spectra of graphs

Shariefuddin Pirzada

pirzadasd@kashmiruniversity.ac.in

Department of Mathematics, University of Kashmir

(This talk is based on joint work with Hilal A. Ganie.)

MSC2000: 05C30, 05C50

Let G be a simple graph with n-vertices, m edges and having Laplacian eigenvalues
µ1, µ2, . . . , µn−1, µn = 0. Let the sum of the k largest Laplacian eigenvalues of G be
Sk(G) =

∑k
i=1 µi. Brouwer conjectured that Sk(G) ≤ m +

(
k+1
2

)
, for all k = 1, 2, . . . , n.

We obtain upper bounds for Sk(G) in terms of the clique number ω, the vertex covering
number τ and the diameter d of a graph G. We show that Brouwer’s conjecture holds for
certain classes of graphs. As an application, we obtain some upper bounds for Laplacian
energy LE(G) which are more stronger than the existing bounds.

[1] A. E. Brouwer and W. H. Haemers. Spectra of graphs. Available from:
http://homepages.cwi.nl/aeb/math/ipm.pdf.

[2] Z. Du and B. Zhou. Upper bounds for the sum of Laplacian eigenvalues of graphs. Linear Algebra
Appl., 436:3672–3683, 2012.

[3] H. A. Ganie, A. M. Alghamdi and S. Pirzada. On the sum of the Laplacian eigenvalues of a graph
and Brouwer’s conjecture. Linear Algebra Appl. 501:376–389, 2016.

[4] W. H. Haemers, A. Mohammadian and B. Tayfeh-Rezaie. On the sum of Laplacian eigenvalues of
graphs. Linear Algebra Appl., 432:2214–2221, 2010.

[5] S. Pirzada and H. A. Ganie. On the Laplacian eigenvalues of a graph and Laplacian energy. Linear
Algebra Appl., 486:454–468, 2015.

[6] I. Rocha, V. Trevisan. Bounding the sum of the largest Laplacian eigenvalues of graphs. Discrete
Applied Math., 170:95–103, 2014.
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A latin square of order n is an n × n array of n symbols in which each symbol occurs
exactly once in every row and in every column. A d-dimensional array satisfying the
same condition is called a latin d-cube. Two latin squares are orthogonal if, when they
are superimposed, every ordered pair of symbols appears exactly once. If in a set of
latin squares, any two Latin squares are orthogonal then this set is called a system of
Mutually Orthogonal Latin Squares (MOLS). From the definition we can ensure that
a latin d-cube is the Cayley table of a d-ary quasigroup. A system consisting of t s-ary
functions f1, . . . , ft with domain Qs (t ≥ s) is orthogonal, if for each subsystem fi1 , . . . , fis
consisting of s functions it holds {(fi1(x), . . . , fis(x)) | x ∈ Qs} = Qs. If the system keeps
to be orthogonal after substituting any constants for each subset of variables then it is
called strongly orthogonal. If the number of variables is two, then such system is a system
of MOLS (see [1]). If s = 3, it is a set of Mutually Orthogonal Latin Cubes (MOLC).

Let Q = Fq be a Galois field of order q. A system of t MOLC is equivalent to an MDS
code with distance t+ 1 (see [1]). Hence, there exists a linear (over Fq) system consisting
of t Mutually Orthogonal Latin s-Cubes as t + s ≤ q + 1 (see [2]). Cartesian product
of two strongly orthogonal systems over alphabets Q1 and Q2 is a strongly orthogonal
system over the alphabet Q1 × Q2. Thus we obtain that if δ2 6= 1 and δ3 6= 1 where
q = 2δ23δ35δ5 . . . is the factorization, then there exists a pair of orthogonal latin cubes of
order q. It is well known that pairs of MOLS of order q do not exist if and only if q = 2, 6.
For all without a finite number of orders we can use Wilson’s construction to obtain pairs
of MOLS. But for pairs of MOLC such constructions were unknown. Now we present a
Wilson-like construction for pairs of MOLC. By using new construction we obtain

Proposition 1. If q = 16(6k ± 1) + 4 then there exists a pair of MOLC of order q.

If 6k − 1 = 18i− 1 or 6k − 1 = 18i+ 5 then pairs of MOLC of order q = 16(6k − 1) + 4
was not previously known. A minimal new order is 84.
The work was funded by the Russian Science Foundation (grant No 14-11-00555).

[1] J. T. Ethier and G. L. Mullen. Strong forms of orthogonality for sets of hypercubes. Discrete Math.
312(12-13): 2050–2061, 2012.

[2] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes, Elsevier/North-
Holland, Amsterdam, 1977.
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The stable rank of a n × n matrix A is the rank of An. The stable rank of A is zero
exactly if A is nilpotent. This talk will present some results and methods related to the
enumeration of certain classes of nilpotent matrices over finite fields and adapt them
to the case of specified stable rank (with additional properties). The key ingredient is
an adaptation of an algorithm due to Crabb (2006) which involves nothing more than
Gaussian elimination and is considerably more elementary than other approaches to these
problems in the literature.

[1] M.C. Crabb. Counting nilpotent endomorphisms. Finite Fields and their Applications, 151–154, 2006.
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Given a graph G = (V,E) and a positive integer p, define the exact distance-p graph G[\p]

as the graph having vertex set V and with an edge between vertices x and y if and only
if x and y have distance p (i.e., any shortest path joining x and y has p edges).

Recently, there has been an effort to obtain upper bounds on the chromatic number
of exact distance-p graphs [2, 3, 4]. For p even, upper bounds on χ(G[\p]) need to in-
volve ∆(G) even for the class of trees. However, for p odd the number is known to be
bounded by a constant for many important classes of graphs. A result of Nešetřil and
Ossona de Mendez [3] tells us that this is the case for every graph class with bounded
expansion. Van den Heuvel et al. [2] reproved this result, and provided explicit upper
bounds on χ(G[\p]) for many graph classes. Although these new upper bounds dramati-
cally improve on previous ones, in most cases it is not clear how their dependence on the
distance is close to having the right order.

Turning from the very general to the particular, we focus on the chromatic number
of exact distance graphs of chordal graphs. Using techniques specific to this class of
graphs, we obtain improved upper bounds both for even an odd distances. Regarding
their dependence on the distance considered, our upper bounds are very close to having
the right order, as a result of Bousquet et al. [1] attests.

[1] N. Bousquet, L. Esperet, A. Harutyunyan, and R. de Joannis de Verclos, Exact distance coloring in
trees. arXiv:1703.06047 [math.CO], 2017.

[2] J. van den Heuvel, H.A. Kierstead, and D.A. Quiroz, Chromatic numbers of exact distance graphs.
arXiv:1612.02160 [math.CO], 2016.

[3] J. Nešetřil and P. Ossona de Mendez, Sparsity – Graphs, Structures, and Algorithms. Springer-Verlag,
Berlin, Heidelberg, 2012.

[4] K. Stavropoulos, On Graph Sparsity and Structure: Colourings and Graph Decompositions. PhD
thesis, RWTH Aachen University, 2016.
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A partial ovoid O of Q−(5, q) is a set of points of Q−(5, q) such that every line of this
quadric shares at most one point with O. A partial ovoid is called maximal if it cannot be
extended to a larger partial ovoid. Several authors have studied maximal partial ovoids of
Q−(5, q), but a complete knowledge of them is still far away. In particular, the spectrum
of their sizes is an open problem. Concerning such a problem, many results have been
found through a computer search. But, apart from this kind of investigation, we have
few theoretical constructions and only sporadic cardinalities. In this talk I show a new
geometric construction, which works for every value of q. By this, we get a new class
of maximal partial ovoids of Q−(5, q), together with a non-interrupted interval of new
cardinalities. In broad outline, the construction is the following. Let S3 be a 3-dimensional
subspace of PG(5, q), meeting Q−(5, q) at an elliptic quadric E. There are exactly q + 1
hyperplanes of PG(5, q) through S3. Two of them are tangent to Q−(5, q) and meet this
quadric at tangent cones. The others meet Q−(5, q) at non-singular quadrics. We get
the mentioned new class of maximal partial ovoids by choosing suitable points of E and
suitable points of the above tangents cones.
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Goulden and Jackson introduced a very powerful method to study the distributions of
certain consecutive patterns in permutations, words, and other combinatorial objects
called the cluster method. There are a number of natural classes of combinatorial objects
which start with either permutations or words and add additional restrictions. These in-
cludes up-down permutations, generalized Euler permutations, words with no consecutive
repeated letters, Young tableaux, and non-backtracking random walks. We develop an
extension of the cluster method which we call the generalized cluster method to study the
distribution of certain consecutive patterns in such restricted combinatorial objects.
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A homomorphism is an adjacency preserving map between the vertex sets of two graphs.
A n-vertex, k-regular graph is strongly regular, with parameters (n, k, λ, µ), if there exist
numbers λ and µ such that every pair of adjacent vertices share λ common neighbors and
every pair of non-adjacent vertices share µ common neighbors. We prove that if G and H
are primitive strongly regular graphs with the same parameters and ϕ is a homomorphism
from G to H, then ϕ is either an isomorphism or a coloring (homomorphism to a complete
subgraph). Moreover, any such coloring is optimal for G and its image is a maximum
clique of H. Therefore, the only endomorphisms of a primitive strongly regular graph are
automorphisms or colorings. This confirms and strengthens a conjecture of Peter Cameron
and Priscila Kazanidis that all strongly regular graphs are cores or have complete cores.
The proof of the result is elementary, mainly relying on linear algebraic techniques, but
can also be viewed as relying on a straightforward application of complementary slackness
to a pair of semidefinite programs defining the Lovász theta number. This talk is based
on the paper arXiv:160100969.

https://arxiv.org/abs/1601.00969
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A permutation π = π1 . . . πn in the symmetric group Sn has descent set

Des π = {i | πi > πi+1}.

Otherwise put, these are the indices of initial elements of consecutive 21 patterns. Given
a set S of positive integers and n > maxS, the descent polynomial of S is the cardinality

d(S;n) = #{π ∈ Sn | Desπ = S}.

It is easy to prove, using the Principle of Inclusion and Exclusion, that this is a polynomial
in n. However, properties of this polynomial do not seem to have been studied much in
the literature. The peak set of π is

Peaπ = {i | πi−1 < πi > πi+1}.

These are indices of middle elements of either consecutive 132 or 231 patterns. Recently
Billey, Burdzy, and Sagan proved that

#{π ∈ Sn | Peaπ = S} = p(S;n) · 2n−#S−1

where p(S;n) is a polynomial in n which they dubbed the peak polynomial of S. These
polynomials have since received the attention of a number of researchers. In this talk we
will compare and contrast these two polynomials talking about their degrees, coefficients
when expanded in a basis of binomial coefficients, roots, and analogues in other Coxeter
groups.
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When it comes to the best experimental designs statisticians need the ones that give
them the estimates with minimum possible variance. Towards the quest of these designs
different criteria can be used based upon the average variance, the maximum variance
or the volume of the confidence region. This discussion gives the construction of optimal
incomplete block designs with nearly minimal number of observations with respect to
D-optimality (minimizing the volume of the confidence region) and A-optimality (mini-
mizing the average variance) criteria. A unified approach towards the use of the associated
graphs has been employed.

Keywords: A-optimality; D-optimality; Concurrence graph; Levi graph; phase-transition
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For given two asymmetric graphs (i.e. graphs with only trivial automorphism), how can
we compare them for their asymmetry? The first work which answers this question is by
Erdős-Rényi [2]. For a given finite graph G, they defined the asymmetry number A(G) of
G as follows:

A(G) = min{|E(G)∆E(G′)| | G′ is a symmetric graph over V (G)}.

In [2], they proved that A(G) ≤ [n−1
2

] for all G with n vertices. By using probabilistic
method, they showed that there exists a graph G such that A(G) ≥ n

2
−O(

√
n log n) for

sufficiently large n. Moreover, it follows that almost all finite graphs are asymmetric.
On the other hand, Erdős-Rényi [2] also investigated the asymmetry of countable graphs.
They showed that countable random graphs are almost surely isomorphic to the graph
R (called the random graph) which is highly symmetric. This result implies a remarkable
gap between finite and countable graphs. From their work, many properties of Aut(R)
have been investigated, see Cameron’s survey paper [1].
In this talk which is based on [4], we consider the extension of these results for tour-
naments. First, we define the asymmetry number A(T ) for a tournament T . Next, we
provide an upper bound for A(T ) and, by using the probabilistic method ([3]), we prove
that this bound is asymptotically best. Moreover, we show an observation of Aut(RT ),
where RT is the random tournament, a natural tournament-analogue of R.
If time permits, we also introduce our digraph-extension of Erdős-Rényi theory.

[1] P. J. Cameron. The random graph. In The Mathematics of Paul Erdős II, R. L. Graham, J. Nesetril,
S. Butler (Editors), Springer, Berlin, 1997, pp. 333–351.

[2] P. Erdős and A. Rényi. Asymmetric graphs. Acta Math. Acad. Sci. Hungar., 14: 295–315, 1963.

[3] P. Erdős and J. Spencer. Probabilistic methods in combinatorics. Probability and Mathematical
Statistics, Vol. 17. Academic Press, New York-London, 1974.

[4] S. Satake. The asymmetry number of finite tournaments and some related results. Available online
in Graphs and Combinatorics, DOI: 10.1007/s00373-017-1787-2.
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For a k-uniform hypergraph F let ex(n, F ) be the maximum number of edges of a k-
uniform n-vertex hypergraph H which contains no copy of F . Determining or estimating
ex(n, F ) is a classical and central problem in extremal combinatorics. While for k = 2
this problem is well understood, due to the work of Turán and of Erdős and Stone, only
very little is known for k-uniform hypergraphs for k > 2. We focus on the case when F
is a k-uniform hypergraph with three edges on k + 1 vertices. Already this very innocent
(and maybe somewhat particular looking) problem is still wide open even for k = 3.

We consider a variant of the problem where the large hypergraph H enjoys additional
hereditary density conditions. Questions of this type were suggested by Erdős and Sós
about 30 years ago. We show that every k-uniform hypergraph H with density > 21−k

with respect to every large collection of k-cliques induced by sets of (k − 2)-tuples con-
tains a copy of F . The required density 21−k is best possible as higher order tournament
constructions show.

Our result can be viewed as a common generalisation of the first extremal result in graph
theory due to Mantel (when k = 2 and the hereditary density condition reduces to a
normal density condition) and a recent result of Glebov, Král’, and Volec (when k = 3
and large subsets of vertices of H induce a subhypergraph of density > 1/4). Our proof
for arbitrary k ≥ 2 utilises the regularity method for hypergraphs.
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We introduce the fundamental slide basis [1] of the polynomial ring. Our motivation is to
study firstly the Stanley symmetric functions, introduced by R. Stanley [5] as a tool for
enumerating reduced decompositions of permutations, and secondly the geometrically-
important basis of Schubert polynomials, the stable limits of which are the Stanley sym-
metric functions. We prove that Schubert polynomials expand as a positive sum of fun-
damental slide polynomials, and that the stable limits of fundamental slide polynomials
are the fundamental quasisymmetric functions introduced by I. Gessel [4].

We define an explicit statistic on permutations [1] that gives the precise point at which
the fundamental slide expansion of a Schubert polynomial stabilizes, i.e., when the num-
ber of terms in its slide expansion is exactly the number of terms in the fundamental
quasisymmetric expansion of the corresponding Stanley symmetric function. We simi-
larly define an explicit statistic on weak compositions [2], giving the stability point for
the fundamental slide expansion of a key polynomial. For vexillary permutations, i.e.,
those avoiding the pattern 2143, Schubert polynomials and key polynomials coincide.

The slide polynomial basis has positive structure constants, and we give a positive combi-
natorial Littlewood-Richardson rule for these numbers. As a main ingredient in our rule,
we define the slide product on weak compositions [1], generalizing the shuffle product [3]
on compositions. Using this and results above, we give a positive Littlewood-Richardson
rule for the slide expansion of products of Schubert polynomials, and formulas for prod-
ucts of Stanley symmetric functions in terms of Schubert structure constants.

[1] S. Assaf and D. Searles, Schubert polynomials, slide polynomials, Stanley symmetric functions and
quasi-Yamanouchi pipe dreams, Adv. Math. 306 (2017), 89–122.

[2] S. Assaf and D. Searles, Kohnert tableaux and a lifting of quasi-Schur functions, preprint (submitted
2016). arXiv:1609.03507.

[3] S. Eilenberg and S. Mac Lane, On the groups of H(Π, n). I, Ann. of Math. (2) 58 (1953), 55–106.

[4] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34
(1984), 289–317.

[5] R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J.
Combin. 5 (1984), no. 4, 359–372.
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Let G be a finite abelian group. Define the sum of a multiset {g1, . . . , gn} of elements
gi ∈ G to be g1 + · · · + gn. A zero-sum free multiset over G is a multiset of elements of
G with no submultiset whose sum is equal to 0G. The Davenport constant of G indicates
the size of the largest zero-sum free multiset over G. Though determining the Davenport
constant of a group is a combinatorial problem, it has interesting applications in Number
Theory. More precisely, if R is the ring of integers of some algebraic number field with
ideal class group isomorphic to G and α is an irreducible element in R, then the Dav-
enport constant of G is the maximal number of prime ideals which occur in the prime
ideal decomposition of the ideal aR. It is known that the Davenport constant of G is at
least 1 + d∗(G) where d∗(G) is a certain constant that is computed using the invariant
factor decomposition of G. There was a conjecture that this bound is always tight, but
counterexamples are now known for many groups G of rank 4 or more. However, the
conjecture has been established for many classes of groups, in particular it is known that
D(G) = 1 + d∗(G) when G has rank at most 2. Whether the conjecture holds when G
has rank 3 is still an open problem. In this talk I will review finite abelian groups for
which the precise value of the Davenport constant has been found, present the value
of the Davenport constant of the smallest finite abelian group of rank 3 for which the
value was previously unknown, and present a new general polynomial upper bound on
the Davenport constant of G in terms of d∗(G). The general polynomial upper bound is
quadratic in d∗(G) and I will show how it improves to a linear polynomial in d∗(G) if G
is isomorphic to a specific infinite class of groups.
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For an arbitrary set of distances D ⊆ {0, 1, . . . , diam(G)}, a graph G is said to be D-
magic if there exists a bijection f : V (G)→ {1, 2, . . . , |V (G)|} and a constant k such that
for any vertex x,

∑
y∈ND(x) (y) = k, where ND(x) = {y ∈ V (G)|d(x, y) ∈ D}.

We define a D-distance graph of a graph G, denoted by ∆D(G), as the graph with vertex
set V (G) and edge set {{x, y}|dG(x, y) ∈ D}. We shall search for D-magic distance regular
graphs for various D by utilising the spectrums of G and ∆D(G).
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Regular and bi-rotary maps of negative prime
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Jozef Širáň

siran@math.sk
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(Based on a joint work with Joint work with A. Breda and D. Catalano)

MSC2000: 05C10, 05C25, 57M15

Pseudo-orientable maps were introduced by Steve Wilson [3] to describe non-orientable
maps with the property that opposite orientations can consistently be assigned to adja-
cent vertices. In this paper we classify the pseudo-orientable maps whose local-orientation-
preserving automorphism group acts regularly on arcs – the bi-rotary maps – on surfaces of
negative prime Euler characteristic. Unlike other classification results for highly symmet-
ric maps on such surfaces (e.g. those in [1, 2] for regular maps) we do not use the powerful
Gorenstein-Walter result on the structure of groups with dihedral Sylow 2-subgroups in
our proofs.

[1] A. Breda d’Azevedo, R. Nedela and J. Širáň, Classification of regular maps of negative prime Euler
characteristic, Trans. Amer. Math. Soc. 357:4175–4190, 2005.

[2] M. D. E. Conder, J. Širáň and T. W. Tucker, The genera, reflexibility and simplicity of regular maps,
J. Europ. Math. Soc. 12:343-364, 2010.

[3] S. Wilson, Riemann Surfaces over Regular Maps, Canad. J. Math. 30:763–782, 1978.
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Fiona Skerman

f.skerman@bristol.ac.uk
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(This talk is based on joint work with Xing Shi Cai, Cecilia Holmgren, Svante Janson
and Tony Johansson.)

MSC2000: 05C5

The notion of an inversion in a rooted labelled tree is a generalization of an inversion
in a permutation. Say that u is an ancestor of v if the unique path from the root to v
passes through u. Given node labelling π we have an inversion if π(u) > π(v) and u is an
ancestor of v. Thus the total number of inversions in a randomly labelled path rooted at
one of its end points is the number of inversions in a random permutation.

We deduce the distribution of total number of inversions in randomly lablled b-ary trees as
well as two random tree models: split trees and Galton-Watson trees. Our work strength-
ens previously existing results on the number of distributions in Galton-Watson trees.
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Smallest snarks with oddness 4
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The oddness of a bridgeless cubic graph G is the smallest number of odd circuits in a
2-factor of G. Oddness is one of the most important invariants of snarks because several
important conjectures in graph theory can be reduced to snarks of oddness 4 or larger.
In this talk we deal with the problem of determining the smallest order of a nontrivial
snark of oddness 4. (Here ‘nontrivial’ means girth at least 5 and cyclic connectivity at
least 4.) We prove that the smallest order of a nontrivial snark with oddness 4 and cyclic
connectivity 4 is 44, and characterise all snarks of order 44 with this property. The proof
relies on a detailed analysis of 3-edge-colourings conflicting on a cycle-separating 4-edge-
cut, an extensive computer search, and a closure theorem for cubic graphs with cyclic
connectivity 4 due to Andersen, Fleischner and Jackson (1988).
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Juxtapositions are a simple special case of permutation grid classes. Each permutation in
a grid class can be drawn into a grid so that the subpermutation in each box is in the class
specified by the corresponding cell in a gridding matrix. Grid classes found application
mainly as tools to study the structure of other permutation classes, but because of their
more general applicability, the study of grid classes in their own right has emerged. Exact
enumeration being an example. However, the difficulty of handling multiple griddings:
that is, enumerating ‘griddable’ objects rather than ‘gridded’ ones, has prevented progress.

As a first step towards enumerating more general grid classes, we replace one cell in the
gridding matrix M of a monotone grid class by a Catalan class, that is, one avoiding a
single permutation of length 3. For simplicity, we restrict our attention to 1× 2 grids and
present a clean and unified way to enumerate all such grid classes.
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Recent times have seen plenty of activity in the area of monochromatic partitioning. A
result of Bessy and Thomassé, confirming a conjecture of Lehel, states that every complete
graph whose edges are coloured with two colours contains two monochromatic cycles, of
distinct colours, which together span all the vertices. We discuss extensions of this result
to hypergraphs, considering tight cycles, loose cycles and l-cycles.
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In 1996, Jackson and Martin proved that a strong ideal ramp scheme is equivalent to an
orthogonal array. However, there was no good characterization of ideal ramp schemes that
are not strong. Here we show the equivalence of ideal ramp schemes to a new variant of
orthogonal arrays that we term augmented orthogonal arrays. We give some constructions
for these new kinds of arrays, and, as a consequence, we also provide parameter situations
where ideal ramp schemes exist but strong ideal ramp schemes do not exist.
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A typical result in graph theory says that a graph G, satisfying certain conditions, has
some property P . Once such a theorem is established, it is natural to ask how strongly
G satisfies P . Can one strengthen the result by showing that G possesses P in a robust
way? What measures of robustness can one utilize? In this survey, we discuss various
measures that can be used to study robustness of graph properties, illustrating them
with examples.



Monday 3.55 Conference Room 6

On Antiadjacency Matrix Properties
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Hariadi, Wildan.)

MSC2000: 05C50

Finite graph can be represented by several matrices such as adjacency matrix, Laplacian
matrix,and incidence matrix. Let A be an adjacency matrix of a graph G. An antiadja-
cency matrix is defined as B = J − A where J is the matrix with all entries equal to 1.
In this talk we discuss antiadjacency matrix properties. The first property has relation
with directed graph, especially directed acyclic graph. We show that the characteristic
polynomial of antiadjacency matrix can give the information on the number of paths
with certain length in a directed acyclic graph. Further, if we consider of characteristic
polynomial of antiadjacency matrix of general directed graph, we can also obtain some
information from the coefficient of the polynomial characteristic. The second property
has relation with regular graph and digraph.

[1] R.B. Bapat, Graphs and Matrices, Hindustan Book Agency. Springer, 1-12, 2010.

[2] G. Gordon, E. McMahon, A Characteristic Polynomial for Rooted Graphs and Rooted Digraphs,
Discrete Mathematics, 232(1-3):19-33, 2001.

[3] R.P. Stanley, A Matrix for Counting Paths in Acyclic Digraphs, Journal of Combinatorial Theory,
Series A, 74(1):169-172, 1996.

[4] W. Qiu, W. Yan, The Coefficients of Laplacian Characteristic Polynomials of Graphs, Linear Algebra
and Its Applications, 435:2474-2479, 2012.
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MSC2000: 05C69

A graph G is well-covered if its maximal independent sets are of the same cardinality [6].
Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all
maximal independent sets are of the same weight. For every graph G, the set of weight
functions w such that G is w-well-covered is a vector space [4], denoted WCW (G) [3].

Let B be a complete bipartite induced subgraph of G on vertex sets of bipartition BX

and BY . Then B is generating if there exists an independent set S such that S ∪BX and
S ∪BY are both maximal independent sets of G. If B ≈ K1,1, then the unique edge in B
is relating. Generating subgraphs play an important role in finding WCW (G).

Deciding whether an input graph G is well-covered is co-NP-complete [5, 7]. Hence,
finding WCW (G) is co-NP-hard. Deciding whether an edge is relating is NP-complete.
Therefore, deciding whether a subgraph is generating is NP-complete as well.

A graph is chordal (triangulated) if every induced cycle is a triangle [1]. It is known that
WCW (G) can be constructed polynomially if G is chordal [2]. Thus recognizing well-
covered chordal graphs is a polynomial problem. We present a polynomial algorithm for
recognizing relating edges and generating subgraphs in chordal graphs.

[1] C. Berge, Some classes of perfect graphs, in “Graph Theory and Theoretical Physics” (F. Harary,
ed.) 155–166, Academic Press, New York, 1967.

[2] J. I. Brown and R. J. Nowakowski, Well covered vector spaces of graphs, SIAM Journal on Discrete
Mathematics 19:952–965, 2006.

[3] J. I. Brown, R. J. Nowakowski and I. E. Zverovich, The structure of well-covered graphs with no
cycles of length 4, Discrete Mathematics 307:2235-2245, 2007.

[4] Y. Caro, N. Ellingham and G. F. Ramey, Local structure when all maximal independent sets have
equal weight, SIAM Journal on Discrete Mathematics 11:644-654, 1998.

[5] V. Chvatal and P. J. Slater, A note on well-covered graphs, Quo Vadis, Graph Theory?, Annals of
Discrete Mathematics, North Holland, Amsterdam 55:179-182, 1993.

[6] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory 8:91-98, 1970.

[7] R. S. Sankaranarayana and L. K. Stewart, Complexity results for well-covered graphs, Networks
22:247-262, 1992.
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On transversals in intercalated latin squares
and in the Cayley table of the group Zm

2
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A latin square L of order n is an n × n-table filled by n symbols so that each symbol
appears exactly once in each row and each column. Every latin square is the Cayley table
of some quasigroup and vice versa.

A transversal in a latin square of order n is a set of n entries which includes exactly one
entry from each row and column and one of each symbol. Let T (L) denote a number of
transversals in a latin square L.

A latin subsquare of order 2 is called an intercalate. We will say that a latin square of
order n is intercalated if it is composed of n2/4 pairwise disjoint intercalates.

Theorem 1. Let L be an intercalated latin square of order n. Then the number of
transversals in L is divisible by 2

n
2
+1. In particular, if a group of order n contains a

subgroup of order 2, then the number of transversals in the Cayley table of the group is
divisible by 2

n
2
+1.

A question on divisibility of a number of transversals in the Cayley tables of groups was
investigated, for example, in [1], and see [2] for a survey.

Let Lm denote the latin square of order n = 2m that is the Cayley table of the group Zm
2 .

Theorem 2. There exists a constant c independent of m such that

T (Lm) ≥ c2m2m−2

= cnn/4.

[1] B. D. McKay, J. C. McLeod, and I. M. Wanless. The number of transversals in a Latin square. Des.
Codes Cryptogr., 40:269–284, 2006.

[2] I. M. Wanless. Transversals in latin squares: a survey. Surveys in Combinatorics 2011, London Math.
Soc. Lecture Note Ser., 392:403–437, 2011.
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MSC2000: 05D05

Let La(n, P ) be the maximum size of a family of subsets of [n] = {1, 2, . . . , n} not contain-
ing P as a (weak) subposet. The diamond poset, denoted Q2, is defined on four elements
x, y, z, w with the relations x < y, z and y, z < w. La(n, P ) has been studied for many
posets; one of the major open problems is determining La(n,Q2). It is conjectured that
La(n,Q2) = (2 + o(1))

(
n

bn/2c

)
, and infinitely many significantly different, asymptotically

tight constructions are known.

Studying the average number of sets from a family of subsets of [n] on a maximal chain
in the Boolean lattice 2[n] has been a fruitful method. We use a partitioning of the
maximal chains and introduce an induction method to show that La(n,Q2) ≤ (2.20711 +
o(1))

(
n

bn/2c

)
, improving on the earlier bound of (2.25 + o(1))

(
n

bn/2c

)
by Kramer, Martin

and Young.
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Andrew Treglown
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MSC2000: 05D10, 05D40

Folkman’s Theorem asserts that for each k ∈ N, there exists a natural number n = F (k)
such that whenever the elements of [n] := {1, . . . , n} are two-coloured, there exists a set
A ⊂ [n] of size k with the property that all the sums of the form

∑
x∈B x, where B is a

nonempty subset of A, are contained in [n] and have the same colour. In 1989, Erdős and
Spencer showed that F (k) ≥ 2ck2/ log k, where c > 0 is an absolute constant. In this talk
we describe how one can improve this bound significantly by showing that F (k) ≥ 22k−1/k

for all k ∈ N.
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A graph is a split graph if its vertex set can be partitioned into a clique and an independent
set. A split graph is unbalanced if there exist two such partitions that are distinct. Cheng,
Collins and Trenk (2016), discovered the following interesting counting fact: unlabeled,
unbalanced split graphs on n vertices can be placed into a bijection with all unlabeled
split graphs on n − 1 or fewer vertices. In this talk we translate these concepts and the
theorem to different combinatorial settings.
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Homomorphism graphs are graphs whose vertices are homomorphisms. A graph is said to
be contractible if its induced homomorphism graph is connected. In this work we study
properties of graph contractibility.



Monday 2.10 Conference Room 6
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For a poset P = (X,≤P ), the strict-double-bound graph of P is the graph sDB(P ) on
V (sDB(P )) = X for which vertices u and v of sDB(P ) are adjacent if and only if u 6=
v and there exist elements x, y ∈ X distinct from u and v such that x ≤P u ≤P y
and x ≤P v ≤P y. The strict-double-bound number ζ(G) of a graph G is defined as
min{ n ; sDB(P ) ∼= G ∪Kn for some poset P}.

In [1] Scott gave some upper bound of this number. In [2] we gave an upper bound of
strict-double-bound numbers of non-trivial trees. In [2], [3] and [4] we also obtained results
on the sum operation.

We obtain an upper bound of strict-double-bound numbers of graphs with cutsets to
induce complete subgraphs.

Theorem 1. Let G be a graph with a cutset S, where the induced subgraph 〈S〉V is a
complete subgraph and G− S has components G1, G2, ..., Gk. For i = 1, 2, ..., k, let Hi =
〈V (Gi) ∪ S〉V and P (Hi) be a poset such that sDB(P (Hi)) ∼= Hi ∪Kζ(Hi). Then ζ(G) ≤∑k

i=1 ζ(Hi) −
∑k

i=1 |Min(P (Hi);S)| −
∑k

i=1 |NoMin(P (Hi);S)| + max{|Min(P (Hi);S)|
; i = 1, 2, ..., k} + max{|NoMin(P (Hi);S)| ; i = 1, 2, ..., k}.

Further we estimate upper bounds of strict-double-bound numbers of chordal graphs and
k-trees.

[1] D. D. Scott, The competition-common enemy graph of a digraph, Discrete Applied Mathematics ,
17 (1987), 269-280.

[2] S. Konishi, K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of paths,
cycles, and wheels, JCMCC, 83 (2012), 205-210.

[3] K. Ogawa, R. Soejima, S. Tagusari and M. Tsuchiya, Note on strict-double-bound numbers of nearly
complete graphs missing some edges, Discrete Mathematics, 312 (2012), 584-587.

[4] K. Ogawa, S. Tagusari and M. Tsuchiya, Note on strict-double-bound graphs and numbers, AKCE
International Journal of Graphs and Combinatorics, 11 (2014),127-13.
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An important topic in extremal graph theory is the topology of networks that are optimal
subject to certain restraints on the degree, order, diameter or other related parameters.
The best known such problems are the degree/diameter problem and the degree/girth
problem. In the directed setting, a fundamental question is: are extremal networks direg-
ular? In this talk I will review previous work in this field and present some new results
on diregularity of extremal networks. In particular, I will explain recent advances in our
understanding of the diregularity of (d, k,+ε)-digraphs, i.e. k-geodetic digraphs with min-
imum out-degree d and order M(d, k) + ε, where M(d, k) is the Moore bound for degree
d and diameter k and ε > 0 is the (small) excess of the digraph.
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For a length n permutation π, Des π (respectively, Desrcπ) denotes the descent set of π
(respectively, the set {n − i | i ∈ Des π}, i.e, the descent set of the reverse-complement
of π), and Ides π denotes the descent set of π−1; and Des, Desrc and Ides become set
valued statistics. In 1976 Foata and Schützenberger shown that the bistatistics (Des, Ides)
and (Desrc, Ides) have the same distribution on the set of same length permutations.
They proof uses the Robinson correspondence between permutations and ordered pairs
of standard Young tableaux, and they asked for a proof that could avoid the use of
that correspondence. In this presentations such a proof is given, and extending Ides to
words we show that (Des, Ides) and (Desrc, Ides) have the same distribution on the set of
rearrangements of the symbols of a word.

As a consequence, we show the joint equidistribution on the rearrangements of the symbols
of a word of stat, maj and Ides, and of maj, stat and Ides, together with other statistics;
here maj is the celebrated major index statistic, and stat is the generalization given by
Kitaev and the present author (2016) of a Mahonian statistic which is defined originally
on permutations in terms of vincular patterns by Babson and Steingŕımsson (2000).
This equidistribution generalizes from permutations to words a previous result due to
Burnstein (2010) and on which our construction is based, and refines another one stated
in the above mentioned 2016 paper.
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Hadwiger’s Conjecture (1943) asserts that every graph without the complete graph Kt as
a minor has a proper vertex-colouring using at most t − 1 colours. Since the conjecture
is stubbornly refusing to be proved, we might look at relaxed versions of it.

In this talk we relax the conclusion of the conjecture by considering two types of im-
proper colourings for Kt-minor-free graphs: (1) colourings in which each monochromatic
component has small degree, and (2) colourings in which each monochromatic compo-
nent has small size. In both cases our new results greatly improve the existing results on
these colourings. The proofs are based on an elementary decomposition result for graphs
without Kt-minor that might be of independent interest.

[1] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges.
Zürich, 88(2):133–142, 1943.

[2] Jan van den Heuvel and David R. Wood. Improper colourings inspired by Hadwiger’s Conjec-
ture. arXiv:1704.06536 [math.CO], 2017.
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Informally, a partial latin square (PLS) P embeds in a group G if you can find a copy
of P in the Cayley table of G. We can think of P as a set of triples P ⊆ Y1 × Y2 × Y3
where Y1, Y2, Y3 are finite sets (the rows, columns and symbols respectively). We say
that P embeds in G if there exist injective maps φi : Yi → G for i = 1, 2, 3 such that
φ1(y1)φ2(y2) = φ3(y3) for each (y1, y2, y3) ∈ P . We answer a question of Hirsch and
Jackson, who asked for the cardinality of the smallest P that embeds in some infinite
group but not into any finite group. It’s not even obvious that any such P exists (though
they gave an example). Our proof uses computations to answer questions about finitely
presented groups which are known to be algorithmically undecidable in general.

[1] H. Dietrich and I. M. Wanless, Small partial Latin squares that embed in an infinite group but not
into any finite group, J. Symbolic Comput., to appear.

[2] R. Hirsch and M. Jackson, Undecidability of representability as binary relations. J. Symbolic Logic
77 (2012), 1211–1244.

[3] I. M. Wanless and B. S. Webb, Small partial Latin squares that cannot be embedded in a Cayley
table. Australas. J. Combin. 67(2) (2017), 352–363.
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A structure S is called homogeneous if every isomorphism between finitely generated
substructures of S extends to an automorphism of S. Thus homogeneity means that any
local symmetry is global, and homogeneous structures are highly symmetric with very
large automorphism groups.

We are interested in homogenous Steiner triple systems, but how you regard STS can
affect what the substructures are, and so can affect properties such as homogeneity.

If an STS is considered as a first order relational structure with a ternary relation which
holds for (x, y, z) if and only if {x, y, z} is a block, then the substructures are partial
STS. However, if an STS is considered as a first order functional structure with a binary
function (Steiner quasi-group) x ◦ y = z if and only if {x, y, z} is a block, then the
substructures are subsystems.

The only homogeneous STS as a relational structure is the Fano plane, but the problem
is more interesting for STS regarded as functional structures.

Here we present uncountably many new (countably infinite) homogeneous Steiner triple
systems that mirror the Henson graphs.
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MSC2000: 05A15, 05A19

Motivated by independent results of Bizley and Duchon, we study rational Dyck paths
and their subset of factor-free elements. We give a bijection between rational Dyck paths
and regular Dyck paths with ascents colored by factor-free words. More precisely, we give
a combinatorial proof of the following theorem:

Theorem 1. Let α, β ∈ N with gcd(α, β) = 1. There is a bijection between the set
of rational Dyck paths with slope β

α
of length (α + β)n and the set DΘ

n (α + β), where
DΘ
n (α + β) represents the set of Dyck paths of semilength (α + β)n whose ascents have

length a multiple of α + β and such that an ascent of length (α + β)j may be colored in
θj different ways. Here θj denotes the number of factor-free words of length (α + β)j.

Our bijection leads to a new statistic based on the reducibility level of the paths for which
we provide a corresponding formula.

Theorem 2. The number rn,k of rational Dyck paths with slope β
α

of length (α+β)n that
have reducibility level equal to k is given by

rn,k =

(
(α + β)n

k − 1

)
(k − 1)!

n!
Bn,k(1!θ1, 2!θ2, . . . ),

where Bn,k(x1, x2, . . . ) are partial Bell polynomials.

Time permitting, we will discuss alternative formulas for various enumerative sequences
that appear in the context of rational Dyck paths.
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In this talk we survey some recent applications of relative entropy in additive combina-
torics. Specifically, we examine to what extent entropy-increment arguments can replace
or even outperform more traditional energy-increment strategies or alternative approxi-
mation arguments based on the Hahn-Banach theorem, which have been instrumental in
proving Szemerédi’s theorem and the Green-Tao theorem on long arithmetic progressions
in the primes.
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An alternating dimap, which was introduced by Tutte in 1948, is an embedded Eulerian
directed graph where the edges incident with each vertex are directed inwards and out-
wards alternately. Three reduction operations for alternating dimaps were investigated
by Farr [1]. A minor of an alternating dimap can be obtained by reducing some of its
edges using the reduction operations. Unlike classical minor operations, these reduction
operations do not commute in general. A Tutte invariant for alternating dimaps is a func-
tion F defined on every alternating dimap such that F is invariant under isormorphism,
multiplicative over components, and which obeys a linear recurrence relation involving
reduction operations. We characterise the Tutte invariants for alternating dimaps intro-
duced by Farr [1]. As a result of the non-commutativity of the reduction operations, the
Tutte invariants are not always well defined. For some of the existing Tutte invariants,
we investigate the properties of alternating dimaps that are required in order to obtain
well defined Tutte invariants.

[1] G. E. Farr. Minors for alternating dimaps, preprint, 2013. http://arxiv.org/abs/1311.2783v3

http://arxiv.org/abs/1311.2783v3
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A decomposition of a graph G is a collection H = {H1, H2, . . . , Hs} of subgraphs of G
such that

⋃s
i=1E(Hi) = E(G) and E(Hi) ∩ E(Hj) = ∅ for 1 ≤ i < j ≤ s. If Hi is

isomorphic to a graph H for 1 ≤ i ≤ s, then we say that G has an H-decomposition or
G can be decomposed into H. If H is isomorphic to a copy of Ck, k-cycle, then we say
G has a k-cycle decomposition or G can be decomposed into k-cycles and H is a k-cycle
system of G.

We call graph G 4-sufficient if each vertex of G is even degree and |E(G)| is divisible by
4. Let H be a subgraph of Kn with degree 0 or 4 and Kn−H be a graph which forms from
Kn by removing the edges in H. Suppose the degree of each vertex of H is 0. A. Kotzig
had proved that Kn is 4-sufficient if and only if Kn has a 4-cycle system. If the degree of
each vertex of H is not all 0, then the induced subgraph of H by the vertices with degree
4 is a 4-regular subgraph of Kn. In this talk, we will show that any 4-sufficient graph
Kn −H has a 4-cycle system.
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The transversal number τ(G) of a hypergraph G is the minimum cardinality of a set of
vertices that intersects all edges of G. For r ≥ 1 define

fr = sup
τ(G)

|V (G)|+ |E(G)|
,

where G ranges over all r-uniform hypergraphs. In 1990 Alon proved that as r tends to
infinity

fr = (1 + o(1))
ln r

r
.

We consider the following generalization of this problem. Given a familyH of hypergraphs,
an H-transversal of a hypergraph G is a set of vertices that intersects the vertex set of
every subgraph H of G such that H ∈ H. The H-transversal number τH(G) is the
minimum cardinality of an H-transversal of G. Define

fr(H) = sup
τH(G)

|V (G)|+ |E(G)|
,

where G ranges over all r-uniform hypergraphs. Although the problem has been defined
for all r’s, in this talk we consider it only for graphs (i.e. r = 2). Consequently an H-
transversal will be called an H-vertex cover. Note that if H is the family of cycles then
an H-vertex cover is a well known object called feedback vertex set, which has wide
applications in operating systems, database systems etc. Furthermore, if H = {Pk}, then
an H-vertex cover is called a k-path vertex cover, which has some important applications,
as well.

We prove that

f2(Kq) =
1

2q − 1
, f2(P3) = 1/4, f2(P4) = 1/5, f2(C4) = 1/6, and

1

5
√

2q + 1
≤ f2(Cq) ≤ f2(Pq) ≤ 1/5 for q ≥ 5.

In order to prove these results we establish a connection between H-transversals and the
node-fault-tolerance in graphs. Furthermore, we derive some bounds on theH-independence
number.
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An extremal point of a positive threshold Boolean function f is either a maximal zero or a
minimal one. It is known that if f depends on all its variables, then the set of its extremal
points completely specifies f within the universe of threshold functions. However, in some
cases, f can be specified by a smaller set. The minimum number of points in such a set
is the specification number of f . It was shown in [2] that the specification number of a
threshold function of n variables is at least n + 1. In [1] it was proved that this bound is
attained for nested functions and conjectured that for all other threshold functions the
specification number is strictly greater than n + 1. We resolve this conjecture negatively
by exhibiting threshold Boolean functions of n variables, which are non-nested and for
which the specification number is n + 1. On the other hand, we show that the set of
extremal points satisfies the statement of the conjecture, i.e. a positive threshold Boolean
function depending on all its n variables has n + 1 extremal points if and only if it is
nested.

[1] M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying Boolean functions by labelled ex-
amples. Discrete Applied Mathematics, 61(1):1-25, 1995.

[2] S.-T. Hu. Threshold Logic. University of California Press, Berkeley, 1965.
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In recent years, studies of the combinatorics of lambda calculus have revealed some sur-
prising connections to the theory of graphs on surfaces. In the talk, after a quick intro-
duction to lambda calculus, I will give a brief survey of these enumerative connections
[1, 2, 3, 4], then focus on the correspondence between rooted trivalent maps and lin-
ear lambda terms, explaining how it may be seen as encoding a Tutte decomposition of
trivalent maps with boundary.

[1] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI and BCK lambda
terms. Theoretical Computer Science, 502:227–238, 2013.

[2] N. Zeilberger and A. Giorgetti. A correspondence between rooted planar maps and normal planar
lambda terms. Logical Methods in Computer Science, 11(3:22):1–39, 2015.

[3] N. Zeilberger. Counting isomorphism classes of β-normal linear lambda terms. arXiv:1509.07596

[4] N. Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. Journal of Functional
Programming, 26:e21, 2016.
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Let [n] denote the finite set {1, 2, · · · , n}. For A ⊆ [n], define Ā = [n] \ A. A set family
A consisting of subsets of [n] is called uncomplemented if for each A ∈ A, Ā /∈ A. Two
subsets A, B of [n] are called strongly incomparable if A 6= B and neither properly contains
the other. They are called weakly incomparable if neither properly contains the other. In
1976, A. J. W. Hilton proved that if A and B are two uncomplemented, mutually strongly
incomparable families of subsets of [n], then |A|+ |B| 6 2n−1. In this talk, we show that,
Hilton’s result can be generalized to the case of three families and the bound 2n−1 is still
best possible. Moreover, we prove that for k set families A1, · · · ,, Ak on [n], the following
two statements are equivalent.

1. If A1, · · · ,Ak are uncomplemented, mutually weakly incomparable families on [n],
then

|A1|+ · · ·+ |Ak| 6 max(2n−1, k

(
n

bn
2
c+ 1

)
).

2. If A1, · · · ,Ak are uncomplemented, mutually strongly incomparable families on [n],
then

|A1|+ · · ·+ |Ak| 6 2n−1.

[1] B. Bollobás, P. Keevash and B. Sudakov. Multicolored extremal problems. J. Combin. Theory (Ser
A), 107: 295–312, 2004.

[2] A. J. W. Hilton. A theorem on finite sets. Quart. J. Math. Oxford, 27: 33–36, 1976.

[3] A. J. W. Hilton. An intersection theorem for a collection of families of subsets of a finite set. J.
London Math. Soc., 15: 369–376, 1977.

[4] P. Keevash and B. Sudakov. Set systems with restricted cross-intersections and the minimum rank
of inclusion matrices. Siam J. Discrete Math., 18: 713–727, 2005.
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This talk is a summary of the first in-depth investigation of “shuffle-compatible” per-
mutation statistics. Given a length m permutation π and a length n permutation σ on
disjoint sets of integers, we say that a length m + n permutation τ is a shuffle of π and
σ if π and σ are subsequences of τ . The set of shuffles of π and σ is denoted S(π, σ). For
example, S(53, 16) = {5316, 5136, 5163, 1653, 1536, 1563}.

We call a permutation statistic st shuffle-compatible if for disjoint permutations π and
σ, the multiset { st(τ) | τ ∈ S(π, σ) }—that is, the distribution of the statistic st among
all shuffles of π and σ—depends only on st(π), st(σ), and the lengths of π and σ. Our
definition is motivated by Richard Stanley’s theory of P -partitions [3], which implies the
shuffle-compatibility of the following classical permutation statistics: the descent set Des,
the descent number des, the major index maj, and the pair (des,maj).

In this talk, we develop a theory of shuffle-compatibility for descent statistics, which are
permutation statistics that depend only on the descent set and length of a permutation.
Every shuffle-compatible statistic st can be associated with an algebra whose multipli-
cation can be thought of as algebraically encoding the shuffle-compatibility property of
st; we call this the shuffle algebra of st. For example, the descent set shuffle algebra is
isomorphic to the algebra of quasisymmetric functions QSym [2].

Our main results are as follows. We establish a necessary and sufficient condition for
the shuffle-compatibility of a descent statistic, which also shows that the shuffle algebra
of any shuffle-compatible descent statistic is isomorphic to a quotient algebra of QSym.
We also give a dual version of this condition which exploits the duality between QSym
and the coalgebra of noncommutative symmetric functions Sym [1]. These results are
then used to show that several well-known descent statistics are shuffle-compatible and
to characterize their shuffle algebras.

[1] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves
Thibon. Noncommutative symmetric functions. Adv. Math., 112(2): 218–348, 1995.

[2] Ira M. Gessel. Multipartite P -partitions and inner products of skew Schur functions. Contemp. Math.,
34:289–317, 1984.

[3] Richard P. Stanley. Ordered Structures and Partitions. Memoirs of the American Mathematical
Society 199. American Mathematical Society, Providence, 1972.


